Example #1
0
def run():
    args = parse_args()

    # use cuda
    if args.cuda:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    input_size = [args.input_size, args.input_size]

    # load net
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device, 
                        input_size=input_size, 
                        num_classes=80, 
                        conf_thresh=args.conf_thresh, 
                        nms_thresh=args.nms_thresh, 
                        use_nms=args.use_nms)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # run
    if args.mode == 'camera':
        detect(net, device, BaseTransform(net.input_size), 
                    thresh=args.visual_threshold, mode=args.mode)
    elif args.mode == 'image':
        detect(net, device, BaseTransform(net.input_size), 
                    thresh=args.visual_threshold, mode=args.mode, path_to_img=args.path_to_img)
    elif args.mode == 'video':
        detect(net, device, BaseTransform(net.input_size),
                    thresh=args.visual_threshold, mode=args.mode, path_to_vid=args.path_to_vid, path_to_save=args.path_to_saveVid)
Example #2
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = len(VOC_CLASSES)
    testset = VOCDetection(args.voc_root, [('2007', 'test')], None,
                           VOCAnnotationTransform())

    cfg = config.voc_cfg
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device,
                        input_size=cfg['min_dim'],
                        num_classes=num_classes)

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net,
             device,
             testset,
             BaseTransform(net.input_size,
                           mean=(0.406, 0.456, 0.485),
                           std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
Example #3
0
def run():
    args = parse_args()

    if args.cuda:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    if args.setup == 'VOC':
        print('use VOC style')
        cfg = config.voc_cfg
        num_classes = 20
    elif args.setup == 'COCO':
        print('use COCO style')
        cfg = config.coco_cfg
        num_classes = 80
    else:
        print('Only support VOC and COCO !!!')
        exit(0)

    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device, input_size=cfg['min_dim'], num_classes=num_classes, use_nms=True)

    
    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # run
    if args.mode == 'camera':
        detect(net, device, BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)), 
                    thresh=args.vis_thresh, mode=args.mode, setup=args.setup)
    elif args.mode == 'image':
        detect(net, device, BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)), 
                    thresh=args.vis_thresh, mode=args.mode, path_to_img=args.path_to_img, setup=args.setup)
    elif args.mode == 'video':
        detect(net, device, BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)),
                    thresh=args.vis_thresh, mode=args.mode, path_to_vid=args.path_to_vid, path_to_save=args.path_to_saveVid, setup=args.setup)
Example #4
0
def test():
    # get device
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # load net
    num_classes = 80
    if args.dataset == 'COCO':
        cfg = config.coco_cfg
        testset = COCODataset(
                    data_dir=args.dataset_root,
                    json_file='instances_val2017.json',
                    name='val2017',
                    img_size=cfg['min_dim'][0],
                    debug=args.debug)
    elif args.dataset == 'VOC':
        cfg = config.voc_cfg
        testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None, VOCAnnotationTransform())


    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device, input_size=cfg['min_dim'], num_classes=num_classes)

    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test_net(net, device, testset,
             BaseTransform(net.input_size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)),
             thresh=args.visual_threshold)
Example #5
0
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # input size
    input_size = [args.input_size, args.input_size]

    # load net
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device, 
                        input_size=input_size, 
                        num_classes=num_classes, 
                        backbone=args.backbone,
                        use_nms=args.use_nms)

    # load net
    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.eval()
    print('Finished loading model!')
    net = net.to(device)
    
    # evaluation
    with torch.no_grad():
        if args.dataset == 'voc':
            voc_test(net, device, input_size)
        elif args.dataset == 'coco-val':
            coco_test(net, device, input_size, test=False)
        elif args.dataset == 'coco-test':
            coco_test(net, device, input_size, test=True)
Example #6
0
                              name='val2017',
                              img_size=input_size[0])

    class_colors = [(np.random.randint(255), np.random.randint(255),
                     np.random.randint(255)) for _ in range(num_classes)]

    # load net
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device,
                        input_size=input_size,
                        num_classes=num_classes,
                        conf_thresh=args.conf_thresh,
                        nms_thresh=args.nms_thresh,
                        use_nms=args.use_nms)

    net.load_state_dict(torch.load(args.trained_model, map_location=device))
    net.to(device).eval()
    print('Finished loading model!')

    # evaluation
    test(net=net,
         device=device,
         testset=dataset,
         transform=BaseTransform(input_size),
         thresh=args.visual_threshold,
         class_colors=class_colors,
         class_names=class_names,
         class_indexs=class_indexs,
         dataset=args.dataset)