Example #1
0
def get_model(idx, device):
    model_file = DATASETS[idx] + '_400.pt'
    if idx == 0:
        model = NumericModel(n_features=4,
                             n_hidden=4 * 4,
                             n_classes=2,
                             use_prob=True)
    elif idx == 1:
        model = NumericModel(n_features=30,
                             n_hidden=30 * 4,
                             n_classes=2,
                             use_prob=True)
    elif idx == 2:
        model = NumericModel(n_features=8,
                             n_hidden=8 * 4,
                             n_classes=2,
                             use_prob=True)
    elif idx == 3:
        model = Resnet(use_prob=True)
        model_file = '{}_{}_200.pt'.format(DATASETS[idx], MODEL_NAMES[idx])
    elif idx == 4:
        model = Vgg(use_prob=True)
        model_file = '{}_{}_200.pt'.format(DATASETS[idx], MODEL_NAMES[idx])
    elif idx == 5:
        model = BaseModel(use_prob=True)
        model_file = '{}_200.pt'.format(DATASETS[idx])
    else:
        raise NotImplementedError
    path_model = os.path.join(RESULT_PATH, model_file)
    model.load_state_dict(torch.load(path_model, map_location=device))
    model = model.to(device)
    return model
Example #2
0
def train_model(data, model_name, dataset_train, dataset_test, epochs, device,
                file_model):
    dataloader_train = DataLoader(dataset_train, batch_size=128, shuffle=True)
    dataloader_test = DataLoader(dataset_test, batch_size=128, shuffle=False)
    print('Train set: {}, Test set: {}'.format(len(dataset_train),
                                               len(dataset_test)))

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    if data == 'mnist':
        model = BaseModel(use_prob=True).to(device)
    elif data == 'cifar10' and model_name == 'resnet':
        model = Resnet(use_prob=True).to(device)
    elif data == 'cifar10' and model_name == 'vgg':
        model = Vgg(use_prob=True).to(device)
    else:
        raise NotImplementedError

    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)

    if not os.path.exists(file_model):
        since = time.time()
        for e in range(epochs):
            start = time.time()
            tr_loss, tr_acc = train(model, dataloader_train, loss, optimizer,
                                    device)
            va_loss, va_acc = validate(model, dataloader_test, loss, device)
            scheduler.step()
            time_elapsed = time.time() - start
            print((
                '{:2d}/{:d}[{:s}] Train Loss: {:.4f} Acc: {:.4f}%, Test Loss: {:.4f} Acc: {:.4f}%'
            ).format(e + 1, epochs,
                     str(datetime.timedelta(seconds=time_elapsed)), tr_loss,
                     tr_acc * 100., va_loss, va_acc * 100.))

        time_elapsed = time.time() - since
        print('Total run time:', str(datetime.timedelta(seconds=time_elapsed)))

        torch.save(model.state_dict(), file_model)
        print('Save base model to:', file_model)
    else:
        print('Found existing file:', file_model)
        model.load_state_dict(torch.load(file_model, map_location=device))
    return model
Example #3
0
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--attack', type=str, required=True, choices=data_params['attacks'])
    parser.add_argument('--eps', type=float, default=0.3)
    # NOTE: In CW_L2 attack, eps is the upper bound of c.
    parser.add_argument('--n_samples', type=int, default=2000)
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)
    
    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Running attack: {}'.format(args.attack))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(args.data_path, train=False, download=True, transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path, train=False, download=True, transform=transforms)
    else:
        data_path = os.path.join(args.data_path, data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X, y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(torch.from_numpy(X_train).type(torch.float32), torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(torch.from_numpy(X_test).type(torch.float32), torch.from_numpy(y_test).type(torch.long))

    dataloader_train = DataLoader(dataset_train, 256, shuffle=False)
    dataloader_test = DataLoader(dataset_test, 256, shuffle=False)

    shape_train = get_shape(dataloader_train.dataset)
    shape_test = get_shape(dataloader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)

    # Load model
    use_prob = args.attack not in ['apgd', 'apgd1', 'apgd2', 'cw2', 'cwinf']
    print('Attack:', args.attack)
    print('Using softmax layer:', use_prob)
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))
    else:
        n_features = data_params['data'][args.data]['n_features']
        n_classes = data_params['data'][args.data]['n_classes']
        model = NumericModel(
            n_features,
            n_hidden=n_features * 4,
            n_classes=n_classes,
            use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    optimizer = optim.SGD(model.parameters(), lr=0.01,
                          momentum=0.9, weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))

    _, acc_train = validate(model, dataloader_train, loss, device)
    _, acc_test = validate(model, dataloader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    tensor_test_X, tensor_test_y = get_correct_examples(
        model, dataset_test, device=device, return_tensor=True)
    dataset_perfect = TensorDataset(tensor_test_X, tensor_test_y)
    loader_perfect = DataLoader(dataset_perfect, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_perfect, loss, device)
    print('Accuracy on {} filtered test examples: {:.4f}%'.format(
        len(dataset_perfect), acc_perfect * 100))

    # Generate adversarial examples
    n_features = data_params['data'][args.data]['n_features']
    n_classes = data_params['data'][args.data]['n_classes']
    if isinstance(n_features, int):
        n_features = (n_features,)

    classifier = PyTorchClassifier(
        model=model,
        loss=loss,
        input_shape=n_features,
        optimizer=optimizer,
        nb_classes=n_classes,
        clip_values=(0.0, 1.0),
        device_type='gpu')

    if args.attack == 'apgd':
        eps_step = args.eps / 10.0 if args.eps <= 0.1 else 0.1
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd1':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=1,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd2':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=2,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'bim':
        eps_step = args.eps / 10.0
        attack = BasicIterativeMethod(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'boundary':
        attack = BoundaryAttack(
            estimator=classifier,
            max_iter=1000,
            sample_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cw2':
        # NOTE: Do NOT increase the batch size!
        attack = CarliniWagnerAttackL2(
            model=model,
            n_classes=n_classes,
            confidence=args.eps,
            verbose=True,
            check_prob=False,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cwinf':
        attack = CarliniLInfMethod(
            classifier=classifier,
            confidence=args.eps,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'deepfool':
        attack = DeepFool(
            classifier=classifier,
            epsilon=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'fgsm':
        attack = FastGradientMethod(
            estimator=classifier,
            eps=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'jsma':
        attack = SaliencyMapMethod(
            classifier=classifier,
            gamma=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'line':
        if args.data == 'mnist':
            color = args.eps
        elif args.data == 'cifar10':
            color = (args.eps, args.eps, args.eps)
        else:
            raise NotImplementedError
        attack = LineAttack(color=color, thickness=1)
    elif args.attack == 'shadow':
        attack = ShadowAttack(
            estimator=classifier,
            batch_size=args.batch_size,
            targeted=False,
            verbose=False)
    elif args.attack == 'watermark':
        attack = WaterMarkAttack(
            eps=args.eps,
            n_classes=data_params['data'][args.data]['n_classes'],
            x_min=0.0,
            x_max=1.0,
            targeted=False)

        X_train, y_train = get_correct_examples(model, dataset_train, device=device, return_tensor=True)
        X_train = X_train.cpu().detach().numpy()
        y_train = y_train.cpu().detach().numpy()
        attack.fit(X_train, y_train)
    else:
        raise NotImplementedError

    if len(dataset_perfect) > args.n_samples:
        n = args.n_samples
    else:
        n = len(dataset_perfect)

    X_benign = tensor_test_X[:n].cpu().detach().numpy()
    y = tensor_test_y[:n].cpu().detach().numpy()

    print('Creating {} adversarial examples with eps={} (Not all attacks use eps)'.format(n, args.eps))
    time_start = time.time()
    # Shadow attack only takes single sample!
    if args.attack == 'shadow':
        adv = np.zeros_like(X_benign)
        for i in trange(len(X_benign)):
            adv[i] = attack.generate(x=np.expand_dims(X_benign[i], axis=0))
    elif args.attack == 'watermark':
        # This is untargeted.
        adv = attack.generate(X_benign, y)
    else:
        adv = attack.generate(x=X_benign)
    time_elapsed = time.time() - time_start
    print('Total time spend: {}'.format(str(datetime.timedelta(seconds=time_elapsed))))

    pred_benign = np.argmax(classifier.predict(X_benign), axis=1)
    acc_benign = np.sum(pred_benign == y) / n
    pred_adv = np.argmax(classifier.predict(adv), axis=1)
    acc_adv = np.sum(pred_adv == y) / n
    print("Accuracy on benign samples: {:.4f}%".format(acc_benign * 100))
    print("Accuracy on adversarial examples: {:.4f}%".format(acc_adv * 100))

    # Save results
    if args.n_samples < 2000:
        output_file = '{}_{}_{}_{}_size{}'.format(args.data, model_name, args.attack, str(args.eps), args.n_samples)
    else:
        output_file = '{}_{}_{}_{}'.format(args.data, model_name, args.attack, str(args.eps))

    path_x = os.path.join(args.output_path, '{}_x.npy'.format(output_file))
    path_y = os.path.join(args.output_path, '{}_y.npy'.format(output_file))
    path_adv = os.path.join(args.output_path, '{}_adv.npy'.format(output_file))
    np.save(path_x, X_benign)
    np.save(path_y, y)
    np.save(path_adv, adv)

    print('Saved to:', '{}_adv.npy'.format(output_file))
    print()
Example #4
0
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, required=True)
    parser.add_argument('--model', type=str, required=True)
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)

    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)

    print('data:', args.data)
    print('model:', args.model)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path,
                                       train=True,
                                       download=True,
                                       transform=transforms)
        dataset_test = datasets.MNIST(args.data_path,
                                      train=False,
                                      download=True,
                                      transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path,
                                         train=True,
                                         download=True,
                                         transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path,
                                        train=False,
                                        download=True,
                                        transform=transforms)
    else:
        data_path = os.path.join(args.data_path,
                                 data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X,
            y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(
            torch.from_numpy(X_train).type(torch.float32),
            torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(
            torch.from_numpy(X_test).type(torch.float32),
            torch.from_numpy(y_test).type(torch.long))

    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=False)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)

    shape_train = get_shape(loader_train.dataset)
    shape_test = get_shape(loader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)
    use_prob = True
    print('Using softmax layer:', use_prob)

    # Load model
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise NotImplementedError
    else:
        n_features = data_params['data'][args.data]['n_features']
        n_classes = data_params['data'][args.data]['n_classes']
        model = NumericModel(n_features,
                             n_hidden=n_features * 4,
                             n_classes=n_classes,
                             use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))

    _, acc_train = validate(model, loader_train, loss, device)
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    # The original train and test sets are no longer needed.
    tensor_train_X, tensor_train_y = get_correct_examples(model,
                                                          dataset_train,
                                                          device=device,
                                                          return_tensor=True)
    dataset_train = TensorDataset(tensor_train_X, tensor_train_y)
    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_train, loss, device)
    print('Accuracy on {} filtered train set: {:.4f}%'.format(
        len(dataset_train), acc_perfect * 100))

    tensor_test_X, tensor_test_y = get_correct_examples(model,
                                                        dataset_test,
                                                        device=device,
                                                        return_tensor=True)
    dataset_test = TensorDataset(tensor_test_X, tensor_test_y)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_test, loss, device)
    print('Accuracy on {} filtered test set: {:.4f}%'.format(
        len(dataset_test), acc_perfect * 100))

    X_train = tensor_train_X.cpu().detach().numpy()
    y_train = tensor_train_y.cpu().detach().numpy()

    X_baard = baard_preprocess(args.data,
                               tensor_train_X).cpu().detach().numpy()
    obj = {'X_train': X_baard, 'y_train': y_train}
    path_ouput = os.path.join(
        args.output_path,
        '{}_{}_baard_train.pt'.format(args.data, args.model, args.model))
    torch.save(obj, path_ouput)
    print('Save to:', path_ouput)
    print()
Example #5
0
def get_baard_output(data, model_name, data_path, output_path, file_name,
                     param, batch_size, device):
    """This function reads a dataset object. It runs BAARD, applies clipping and 
    adds label_as_adv to the object.
    """
    file_path = os.path.join(output_path, file_name)
    print('file_path:', file_path)

    obj = torch.load(file_path)
    X = obj['X']
    adv = obj['adv']
    y = obj['y']

    # Load model
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])
    if data == 'mnist':
        dataset_train = datasets.MNIST(data_path,
                                       train=True,
                                       download=True,
                                       transform=transforms)
        model = BaseModel(use_prob=False).to(device)
        pretrained = 'mnist_200.pt'
    elif data == 'cifar10':
        dataset_train = datasets.CIFAR10(data_path,
                                         train=True,
                                         download=True,
                                         transform=transforms)
        if model_name == 'resnet':
            model = Resnet(use_prob=False).to(device)
            pretrained = 'cifar10_resnet_200.pt'
        elif model_name == 'vgg':
            model = Vgg(use_prob=False).to(device)
            pretrained = 'cifar10_vgg_200.pt'
        else:
            raise NotImplementedError
    else:
        raise NotImplementedError

    pretrained_path = os.path.join(output_path, pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))
    pred = predict_numpy(model, X, device)
    acc = np.mean(pred == y)
    print('Accuracy on {} clean samples: {}'.format(X.shape[0], acc))

    tensor_train_X, tensor_train_y = get_correct_examples(model,
                                                          dataset_train,
                                                          device=device,
                                                          return_tensor=True)
    X_train = tensor_train_X.cpu().detach().numpy()
    y_train = tensor_train_y.cpu().detach().numpy()

    # Load the preprocessed training set
    baard_train_path = os.path.join(
        output_path, '{}_{}_baard_train.pt'.format(data, model_name))
    obj = torch.load(baard_train_path)
    X_baard = obj['X_train']

    # Load the original validation set for BAARD
    # eg: ./results/mnist_basic_apgd2_2.0_adv.npy
    file_root = '{}_{}_apgd2_2.0'.format(data, model_name)
    path_benign = os.path.join(output_path, file_root + '_x.npy')
    path_y = os.path.join(output_path, file_root + '_y.npy')
    X_val = np.load(path_benign)
    y_val = np.load(path_y)
    n = X_val.shape[0] // 2
    X_val = X_val[n:]
    y_val = y_val[n:]

    stages = []
    stages.append(ApplicabilityStage(n_classes=N_CLASSES,
                                     quantile=param['q1']))
    stages.append(
        ReliabilityStage(n_classes=N_CLASSES,
                         k=param['k_re'],
                         quantile=param['q2']))
    stages.append(
        DecidabilityStage(n_classes=N_CLASSES,
                          k=param['k_de'],
                          quantile=param['q3']))
    print('BAARD: # of stages:', len(stages))

    detector = BAARDOperator(stages=stages)
    detector.stages[0].fit(X_baard, y_train)
    detector.stages[1].fit(X_train, y_train)
    detector.stages[2].fit(X_train, y_train)
    detector.search_thresholds(X_val, y_val, np.zeros_like(y_val))

    pred_adv = predict_numpy(model, adv, device)
    print('Acc on adv without clip:', np.mean(pred_adv == y))

    # count_class(pred_adv)

    # TODO: After clipping, the 1st stage still blocks samples. I don't know why?!
    # To bypass the 1st stage, we want to clip all adversarial examples with the bounding boxes
    applicability = detector.stages[0]
    thresholds = applicability.thresholds_
    adv_clipped = adv.copy()
    for c in range(N_CLASSES):
        idx = np.where(pred_adv == c)[0]
        # Adversarial examples do NOT have the same distribution as the true classes
        if len(idx) == 0:
            continue
        bounding_boxes = thresholds[c]
        low = bounding_boxes[0]
        high = bounding_boxes[1]
        shape = adv_clipped[idx].shape
        subset = flatten(adv[idx])
        # clipped_subset = np.clip(subset, low, high)
        subset = np.minimum(subset, high)
        subset = np.maximum(subset, low)
        adv_clipped[idx] = subset.reshape(shape)

    pred_adv_clip = predict_numpy(model, adv_clipped, device)
    print('Acc on adv with clip:', np.mean(pred_adv_clip == y))
    print('Class changed after clipping:', np.sum(pred_adv != pred_adv_clip))

    pred_X = predict_numpy(model, X, device)
    assert not np.all([pred_X, y])
    baard_label_adv = detector.detect(adv_clipped, pred_adv_clip)

    s1_blocked = detector.stages[0].predict(adv_clipped, pred_adv_clip)
    print('Blocked by Stage1:', np.sum(s1_blocked))

    acc = acc_on_adv(pred_adv_clip, y, baard_label_adv)
    print('Acc_on_adv:', acc)

    baard_label_x = detector.detect(X, y)
    print('FPR:', np.mean(baard_label_x))

    output = {
        'X': X,
        'adv': adv_clipped,
        'y': y,
        'baard_label_x': baard_label_x,
        'baard_label_adv': baard_label_adv
    }
    torch.save(output, file_path)
    print('Save to:', file_path)
    print()
Example #6
0
def train_adv(data='mnist',
              model_name='basic',
              n_samples=2000,
              eps=2.,
              path_output='results',
              path_data='data',
              is_test=False,
              batch_size=128,
              device='cpu'):
    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])
    if data == 'mnist':
        dataset_test = datasets.MNIST(path_data,
                                      train=False,
                                      download=True,
                                      transform=transforms)
    elif data == 'cifar10':
        dataset_test = datasets.CIFAR10(path_data,
                                        train=False,
                                        download=True,
                                        transform=transforms)
    else:
        raise NotImplementedError
    loader_test = DataLoader(dataset_test,
                             batch_size=batch_size,
                             shuffle=False)

    # Load model
    if data == 'mnist':
        model = BaseModel(use_prob=False).to(device)
        n_features = (1, 28, 28)
        pretrained = 'mnist_200.pt'
    elif data == 'cifar10':
        n_features = (3, 32, 32)
        if model_name == 'resnet':
            model = Resnet(use_prob=False).to(device)
            pretrained = 'cifar10_resnet_200.pt'
        elif model_name == 'vgg':
            model = Vgg(use_prob=False).to(device)
            pretrained = 'cifar10_vgg_200.pt'
        else:
            raise NotImplementedError
    else:
        raise NotImplementedError

    pretrained_path = os.path.join(path_output, pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))
    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    tensor_test_X, tensor_test_y = get_correct_examples(model,
                                                        dataset_test,
                                                        device=device,
                                                        return_tensor=True)
    # Get samples from the tail
    if not is_test:
        # This is for training the surrogate model
        tensor_test_X = tensor_test_X[-n_samples:]
        tensor_test_y = tensor_test_y[-n_samples:]
    else:
        # This is for testing the surrogate model
        tensor_test_X = tensor_test_X[-n_samples - 2000:-2000]
        tensor_test_y = tensor_test_y[-n_samples - 2000:-2000]
    dataset_test = TensorDataset(tensor_test_X, tensor_test_y)
    loader_test = DataLoader(dataset_test,
                             batch_size=batch_size,
                             shuffle=False)
    _, acc_perfect = validate(model, loader_test, loss, device)
    print('Accuracy on {} filtered test set: {:.4f}%'.format(
        len(dataset_test), acc_perfect * 100))

    classifier = PyTorchClassifier(model=model,
                                   loss=loss,
                                   input_shape=n_features,
                                   optimizer=optimizer,
                                   nb_classes=10,
                                   clip_values=(0.0, 1.0),
                                   device_type='gpu')
    attack = AutoProjectedGradientDescent(estimator=classifier,
                                          eps=eps,
                                          eps_step=0.1,
                                          max_iter=1000,
                                          batch_size=batch_size,
                                          targeted=False)

    X_benign = tensor_test_X.cpu().detach().numpy()
    y_true = tensor_test_y.cpu().detach().numpy()
    adv = attack.generate(x=X_benign)
    pred_adv = np.argmax(classifier.predict(adv), axis=1)
    acc_adv = np.mean(pred_adv == y_true)
    print("Accuracy on adversarial examples: {:.4f}%".format(acc_adv * 100))

    if not is_test:
        output_file = '{}_{}_baard_surro_train_eps{}_size{}.pt'.format(
            data, model_name, eps, n_samples)
    else:
        output_file = '{}_{}_baard_surro_test_eps{}_size{}.pt'.format(
            data, model_name, eps, n_samples)
    file_path = os.path.join(path_output, output_file)
    output = {'X': X_benign, 'adv': adv, 'y': y_true}
    torch.save(output, file_path)
    print('Save to:', file_path)
Example #7
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--model',
                        type=str,
                        default='resnet18',
                        choices=['resnet', 'vgg'])
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--epochs', type=int, default=5)
    parser.add_argument('--pretrained', type=str, nargs='?')
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()

    set_seeds(args.random_state)

    if not os.path.exists(args.data_path):
        os.makedirs(args.data_path)

    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Fetch dataset
    transform_train = tv.transforms.Compose([
        tv.transforms.RandomHorizontalFlip(),
        tv.transforms.RandomCrop(32, padding=4),
        tv.transforms.ToTensor()
    ])
    transform_test = tv.transforms.Compose([tv.transforms.ToTensor()])
    dataset_train = datasets.CIFAR10(args.data_path,
                                     train=True,
                                     download=True,
                                     transform=transform_train)
    dataset_test = datasets.CIFAR10(args.data_path,
                                    train=False,
                                    download=True,
                                    transform=transform_test)

    dataloader_train = DataLoader(dataset_train,
                                  batch_size=args.batch_size,
                                  shuffle=True)
    dataloader_test = DataLoader(dataset_test,
                                 batch_size=args.batch_size,
                                 shuffle=False)

    print('Train set: {}, Test set: {}'.format(len(dataset_train),
                                               len(dataset_test)))

    # Prepare model
    if args.model == 'resnet':
        model = Resnet().to(device)
    elif args.model == 'vgg':
        model = Vgg().to(device)
    else:
        raise ValueError('Does not support {}'.format(args.model))

    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                     T_max=args.epochs)

    # Load pre-trained model
    if args.pretrained is not None:
        pretrained_path = os.path.join(args.output_path, args.pretrained)
        model.load_state_dict(torch.load(pretrained_path))

    # Train model
    since = time.time()
    for epoch in range(args.epochs):
        start = time.time()
        tr_loss, tr_acc = train(model, dataloader_train, loss, optimizer,
                                device)
        va_loss, va_acc = validate(model, dataloader_test, loss, device)
        scheduler.step()

        time_elapsed = time.time() - start
        print(('{:2d}/{:d}[{:s}] Train Loss: {:.4f} Acc: {:.4f}%, ' +
               'Test Loss: {:.4f} Acc: {:.4f}%').format(
                   epoch + 1, args.epochs,
                   str(datetime.timedelta(seconds=time_elapsed)), tr_loss,
                   tr_acc * 100., va_loss, va_acc * 100.))

    time_elapsed = time.time() - since
    print('Total run time: {:.0f}m {:.1f}s'.format(time_elapsed // 60,
                                                   time_elapsed % 60))

    # Save model
    file_name = os.path.join(
        args.output_path,
        'cifar10_{:s}_{:d}.pt'.format(args.model, args.epochs))
    print('Output file name: {}'.format(file_name))
    torch.save(model.state_dict(), file_name)

    # Test accuracy per class:
    print('Training set:')
    X, y = dataset2tensor(dataset_train)
    X = X.cpu().detach().numpy()
    y = y.cpu().detach().numpy()
    print_acc_per_label(model, X, y, device)

    print('Test set:')
    X, y = dataset2tensor(dataset_test)
    X = X.cpu().detach().numpy()
    y = y.cpu().detach().numpy()
    print_acc_per_label(model, X, y, device)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, required=True, choices=DATA_NAMES)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--param', type=str, required=True)
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)

    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    with open(args.param) as param_json:
        param = json.load(param_json)
    param['n_classes'] = DATA[args.data]['n_classes']

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Param:', param)
    print('Device: {}'.format(device))

    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    # the autoencoder2 need a larger temperature value for the softmax function.
    use_prob = False
    if args.data == 'mnist':
        dataset_train = datasets.MNIST(
            args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(
            args.data_path, train=False, download=True, transform=transforms)

        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(
            args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(
            args.data_path, train=False, download=True, transform=transforms)

        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('model_name must be either resnet or vgg.')
    else:
        raise ValueError('This autoencoder does not support other datasets.')

    tensor_X_train, tensor_y_train = dataset2tensor(dataset_train)
    X_train = tensor_X_train.cpu().detach().numpy()
    y_train = tensor_y_train.cpu().detach().numpy()
    X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=5000)

    loader_train = DataLoader(
        dataset_train, batch_size=512, shuffle=False)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)

    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path))

    _, acc_train = validate(model, loader_train, loss, device)
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train*100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test*100))

    if args.data == 'mnist':
        detector1 = MagNetDetector(
            encoder=Autoencoder1(n_channel=DATA[args.data]['n_features'][0]),
            classifier=model,
            lr=param['lr'],
            batch_size=param['batch_size'],
            weight_decay=param['weight_decay'],
            x_min=0.0,
            x_max=1.0,
            noise_strength=param['noise_strength'],
            algorithm='error',
            p=1,
            device=device)
        detector1.fit(X_train, y_train, epochs=param['epochs'])

        detector2 = MagNetDetector(
            encoder=Autoencoder2(n_channel=DATA[args.data]['n_features'][0]),
            classifier=model,
            lr=param['lr'],
            batch_size=param['batch_size'],
            weight_decay=param['weight_decay'],
            x_min=0.0,
            x_max=1.0,
            noise_strength=param['noise_strength'],
            algorithm='error',
            p=2,
            device=device)
        detector2.fit(X_train, y_train, epochs=param['epochs'])

        detectors = [detector1, detector2]
    elif args.data == 'cifar10':
        autoencoder = Autoencoder2(n_channel=DATA[args.data]['n_features'][0])
        detectors = []
        detector = MagNetDetector(
            encoder=autoencoder,
            classifier=model,
            lr=param['lr'],
            batch_size=param['batch_size'],
            weight_decay=param['weight_decay'],
            x_min=0.0,
            x_max=1.0,
            noise_strength=param['noise_strength'],
            algorithm='error',
            p=2,
            device=device)
        detector.fit(X_train, y_train, epochs=param['epochs'])
        detectors.append(detector)
        detectors.append(MagNetDetector(
            encoder=autoencoder,
            classifier=model,
            lr=param['lr'],
            batch_size=param['batch_size'],
            weight_decay=param['weight_decay'],
            x_min=0.0,
            x_max=1.0,
            noise_strength=param['noise_strength'],
            algorithm='prob',
            temperature=10,
            device=device))
        detectors.append(MagNetDetector(
            encoder=autoencoder,
            classifier=model,
            lr=param['lr'],
            batch_size=param['batch_size'],
            weight_decay=param['weight_decay'],
            x_min=0.0,
            x_max=1.0,
            noise_strength=param['noise_strength'],
            algorithm='prob',
            temperature=40,
            device=device))
    else:
        raise ValueError('Unsupported dataset.')
    
    # Train autoencoders
    for ae in detectors:
        mse = ae.score(X_val)
        print('MSE training set: {:.6f}, validation set: {:.6f}'.format(
            ae.history_train_loss[-1] if len(ae.history_train_loss) > 0 else np.inf, 
            mse))

        ae.search_threshold(X_val, fp=param['fp'], update=True)
        print('Threshold:', ae.threshold)

    # Save autoencoders
    for i, ae in enumerate(detectors, start=1):
        encoder_path = os.path.join(
            args.output_path,
            'autoencoder_{}_{}_{}.pt'.format(args.data, model_name, i))
        ae.save(encoder_path)
        print('File is saved to:', encoder_path)
Example #9
0
def run_attack_untargeted(file_model, X, y, att_name, eps, device):
    path = file_model.split('/')[0]
    file_str = file_model.split('/')[-1]
    name_arr = file_str.split('_')
    data = name_arr[0]
    model_name = name_arr[1]
    file_data = os.path.join(
        path, '{}_{}_{}_{}.pt'.format(data, model_name, att_name,
                                      round(eps * 1000)))

    if os.path.exists(file_data):
        print('Found existing file:', file_data)
        obj = torch.load(file_data)
        return obj['adv'], obj['X'], obj['y']

    if data == 'mnist':
        n_features = (1, 28, 28)
        n_classes = 10
        model = BaseModel(use_prob=False).to(device)
    elif data == 'cifar10':
        n_features = (3, 32, 32)
        n_classes = 10
        if model_name == 'resnet':
            model = Resnet(use_prob=False).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=False).to(device)
        else:
            raise NotImplementedError
    else:
        raise NotImplementedError

    model.load_state_dict(torch.load(file_model, map_location=device))
    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),
                          lr=0.01,
                          momentum=0.9,
                          weight_decay=5e-4)
    classifier = PyTorchClassifier(model=model,
                                   loss=loss,
                                   input_shape=n_features,
                                   optimizer=optimizer,
                                   nb_classes=n_classes,
                                   clip_values=(0.0, 1.0),
                                   device_type='gpu')

    if att_name == 'apgd':
        eps_step = eps / 4. if eps <= 0.2 else 0.1
        attack = AutoProjectedGradientDescent(estimator=classifier,
                                              eps=eps,
                                              eps_step=eps_step,
                                              max_iter=1000,
                                              batch_size=BATCH_SIZE,
                                              targeted=False)
    elif att_name == 'apgd2':
        attack = AutoProjectedGradientDescent(estimator=classifier,
                                              norm=2,
                                              eps=eps,
                                              eps_step=0.1,
                                              max_iter=1000,
                                              batch_size=BATCH_SIZE,
                                              targeted=False)
    elif att_name == 'cw2':
        # Do not increase the batch_size
        attack = CarliniWagnerAttackL2(model=model,
                                       n_classes=n_classes,
                                       confidence=eps,
                                       verbose=True,
                                       check_prob=False,
                                       batch_size=32,
                                       targeted=False)
    elif att_name == 'deepfool':
        # Do not adjust Epsilon
        attack = DeepFool(classifier=classifier, batch_size=BATCH_SIZE)
    elif att_name == 'fgsm':
        attack = FastGradientMethod(estimator=classifier,
                                    eps=eps,
                                    batch_size=BATCH_SIZE)
    elif att_name == 'line':
        attack = LineAttack(color=1, thickness=2)
    else:
        raise NotImplementedError

    time_start = time.time()
    adv = attack.generate(x=X)
    time_elapsed = time.time() - time_start
    print('Total run time:', str(datetime.timedelta(seconds=time_elapsed)))

    obj = {'X': X, 'y': y, 'adv': adv}
    torch.save(obj, file_data)
    print('Save data to:', file_data)

    return adv, X, y
Example #10
0
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, required=True)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--adv', type=str, required=True, help="Example: 'mnist_basic_apgd_0.3'")
    parser.add_argument('--defence', type=str, required=True, choices=data_params['defences'])
    parser.add_argument('--param', type=str, required=True)
    parser.add_argument('--suffix', type=str)
    parser.add_argument('--random_state', type=int, default=1234)
    parser.add_argument('--save', type=int, default=1, choices=[0, 1])
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)
    
    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Pretrained samples:', args.adv + '_adv.npy')
    print('Defence:', args.defence)

    with open(args.param) as param_json:
        param = json.load(param_json)
    param['n_classes'] = data_params['data'][args.data]['n_classes']
    print('Param:', param)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(args.data_path, train=False, download=True, transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path, train=False, download=True, transform=transforms)
    else:
        data_path = os.path.join(args.data_path, data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X, y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(torch.from_numpy(X_train).type(torch.float32), torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(torch.from_numpy(X_test).type(torch.float32), torch.from_numpy(y_test).type(torch.long))

    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=False)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)

    shape_train = get_shape(loader_train.dataset)
    shape_test = get_shape(loader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)
    use_prob = True
    print('Using softmax layer:', use_prob)

    # Load model
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))
    else:
        n_features = data_params['data'][args.data]['n_features']
        n_classes = data_params['data'][args.data]['n_classes']
        model = NumericModel(n_features, n_hidden=n_features * 4, n_classes=n_classes, use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))

    _, acc_train = validate(model, loader_train, loss, device)
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    # The original train and test sets are no longer needed.
    tensor_train_X, tensor_train_y = get_correct_examples(model, dataset_train, device=device, return_tensor=True)
    dataset_train = TensorDataset(tensor_train_X, tensor_train_y)
    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=True)
    _, acc_perfect = validate(model, loader_train, loss, device)
    print('Accuracy on {} filtered train set: {:.4f}%'.format(len(dataset_train), acc_perfect * 100))

    tensor_test_X, tensor_test_y = get_correct_examples(model, dataset_test, device=device, return_tensor=True)
    dataset_test = TensorDataset(tensor_test_X, tensor_test_y)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_test, loss, device)
    print('Accuracy on {} filtered test set: {:.4f}%'.format(len(dataset_test), acc_perfect * 100))

    # Load pre-trained adversarial examples
    path_benign = os.path.join(args.output_path, args.adv + '_x.npy')
    path_adv = os.path.join(args.output_path, args.adv + '_adv.npy')
    path_y = os.path.join(args.output_path, args.adv + '_y.npy')
    X_benign = np.load(path_benign)
    adv = np.load(path_adv)
    y_true = np.load(path_y)

    dataset = TensorDataset(torch.from_numpy(X_benign), torch.from_numpy(y_true))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    _, acc = validate(model, loader, loss, device)
    print('Accuracy on {} benign samples: {:.4f}%'.format(len(dataset), acc * 100))

    dataset = TensorDataset(torch.from_numpy(adv), torch.from_numpy(y_true))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    _, acc = validate(model, loader, loss, device)
    print('Accuracy on {} adversarial examples: {:.4f}%'.format(len(dataset), acc * 100))

    # Do NOT shuffle the indices, so different defences can use the same test set.
    dataset = TensorDataset(torch.from_numpy(adv))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    pred_adv = predict(model, loader, device).cpu().detach().numpy()

    # Find the thresholds using the 2nd half
    n = len(X_benign) // 2
    # Merge benign samples and adversarial examples into one set.
    # This labels indicate a sample is an adversarial example or not.
    X_val, labels_val = merge_and_generate_labels(adv[n:], X_benign[n:], flatten=False)
    # The predictions for benign samples are exactly same as the true labels.
    pred_val = np.concatenate((pred_adv[n:], y_true[n:]))

    X_train = tensor_train_X.cpu().detach().numpy()
    y_train = tensor_train_y.cpu().detach().numpy()

    # Train defence
    time_start = time.time()
    if args.defence == 'baard':
        sequence = param['sequence']
        stages = []
        if sequence[0]:
            stages.append(ApplicabilityStage(n_classes=param['n_classes'], quantile=param['q1']))
        if sequence[1]:
            stages.append(ReliabilityStage(n_classes=param['n_classes'], k=param['k_re'], quantile=param['q2']))
        if sequence[2]:
            stages.append(DecidabilityStage(n_classes=param['n_classes'], k=param['k_de'], quantile=param['q3']))
        print('BAARD: # of stages:', len(stages))
        detector = BAARDOperator(stages=stages)

        # Run preprocessing
        baard_train_path = os.path.join(args.output_path, '{}_{}_baard_train.pt'.format(args.data, model_name))
        obj = torch.load(baard_train_path)
        X_baard = obj['X_train']
        y_train = obj['y_train']
        # Fit the model with the filtered the train set.
        detector.stages[0].fit(X_baard, y_train)
        detector.stages[1].fit(X_train, y_train)
        if len(detector.stages) == 3:
            detector.stages[2].fit(X_train, y_train)
        detector.search_thresholds(X_val, pred_val, labels_val)
        path_baard = os.path.join(args.output_path, 'baard_{}_{}_param.pt'.format(args.data, model_name))
        detector.save(path_baard)
    elif args.defence == 'fs':
        squeezers = []
        if args.data == 'mnist':
            squeezers.append(DepthSqueezer(x_min=0.0, x_max=1.0, bit_depth=1))
            squeezers.append(MedianSqueezer(x_min=0.0, x_max=1.0, kernel_size=2))
        elif args.data == 'cifar10':
            squeezers.append(DepthSqueezer(x_min=0.0, x_max=1.0, bit_depth=4))
            squeezers.append(MedianSqueezer(x_min=0.0, x_max=1.0, kernel_size=2))
            squeezers.append(NLMeansColourSqueezer(x_min=0.0, x_max=1.0, h=2, templateWindowsSize=3, searchWindowSize=13))
        else:
            raise NotImplementedError
        print('FS: # of squeezers:', len(squeezers))
        detector = FeatureSqueezingTorch(
            classifier=model,
            lr=0.001,
            momentum=0.9,
            weight_decay=5e-4,
            loss=loss,
            batch_size=128,
            x_min=0.0,
            x_max=1.0,
            squeezers=squeezers,
            n_classes=param['n_classes'],
            device=device)
        path_fs = os.path.join(args.output_path, '{}_fs.pt'.format(args.pretrained.split('.')[0]))
        detector.load(path_fs)
        detector.search_thresholds(X_val, pred_val, labels_val)
    elif args.defence == 'lid':
        # This batch_size is not same as the mini batch size for the neural network.
        before_softmax = args.data == 'cifar10'
        detector = LidDetector(
            model,
            k=param['k'],
            batch_size=param['batch_size'],
            x_min=0.0,
            x_max=1.0,
            device=device,
            before_softmax=before_softmax)
        # LID uses different training set
        X_train, y_train = detector.get_train_set(X_benign[n:], adv[n:], std_dominator=param['std_dominator'])
        detector.fit(X_train, y_train, verbose=1)
    elif args.defence == 'magnet':
        magnet_detectors = []
        # Different datasets require different autoencoders.
        if args.data == 'mnist':
            # autoencoder1 and autoencoder2
            magnet_detectors.append(MagNetDetector(
                encoder=Autoencoder1(n_channel=1),
                classifier=model,
                lr=param['lr'],
                batch_size=param['batch_size'],
                weight_decay=param['weight_decay'],
                x_min=0.0,
                x_max=1.0,
                noise_strength=param['noise_strength'],
                algorithm='error',
                p=1,
                device=device))
            magnet_detectors.append(MagNetDetector(
                encoder=Autoencoder2(n_channel=1),
                classifier=model,
                lr=param['lr'],
                batch_size=param['batch_size'],
                weight_decay=param['weight_decay'],
                x_min=0.0,
                x_max=1.0,
                noise_strength=param['noise_strength'],
                algorithm='error',
                p=2,
                device=device))
        elif args.data == 'cifar10':
            autoencoder = Autoencoder2(
                n_channel=data_params['data'][args.data]['n_features'][0])
            # There are 3 autoencoder based detectors, but they use the same architecture.
            magnet_detectors.append(MagNetDetector(
                encoder=autoencoder,
                classifier=model,
                lr=param['lr'],
                batch_size=param['batch_size'],
                weight_decay=param['weight_decay'],
                x_min=0.0,
                x_max=1.0,
                noise_strength=param['noise_strength'],
                algorithm='error',
                p=2,
                device=device))
            magnet_detectors.append(MagNetDetector(
                encoder=autoencoder,
                classifier=model,
                lr=param['lr'],
                batch_size=param['batch_size'],
                weight_decay=param['weight_decay'],
                x_min=0.0,
                x_max=1.0,
                noise_strength=param['noise_strength'],
                algorithm='prob',
                temperature=10,
                device=device))
            magnet_detectors.append(MagNetDetector(
                encoder=autoencoder,
                classifier=model,
                lr=param['lr'],
                batch_size=param['batch_size'],
                weight_decay=param['weight_decay'],
                x_min=0.0,
                x_max=1.0,
                noise_strength=param['noise_strength'],
                algorithm='prob',
                temperature=40,
                device=device))
        else:
            raise ValueError('Magnet requires autoencoder.')

        for i, ae in enumerate(magnet_detectors, start=1):
            ae_path = os.path.join(args.output_path, 'autoencoder_{}_{}_{}.pt'.format(args.data, model_name, i))
            ae.load(ae_path)
            tensor_X_test, _ = dataset2tensor(dataset_test)
            X_test = tensor_X_test.cpu().detach().numpy()
            print('Autoencoder {} MSE training set: {:.6f}, test set: {:.6f}'.format(i, ae.score(X_train), ae.score(X_test)))
            print('Autoencoder {} threshold: {}'.format(i, ae.threshold))

        reformer = MagNetAutoencoderReformer(
            encoder=magnet_detectors[0].encoder,
            batch_size=param['batch_size'],
            device=device)

        detector = MagNetOperator(
            classifier=model,
            detectors=magnet_detectors,
            reformer=reformer,
            batch_size=param['batch_size'],
            device=device)
    elif args.defence == 'rc':
        detector = RegionBasedClassifier(
            model=model,
            r=param['r'],
            sample_size=param['sample_size'],
            n_classes=param['n_classes'],
            x_min=0.0,
            x_max=1.0,
            batch_size=param['batch_size'],
            r0=param['r0'],
            step_size=param['step_size'],
            stop_value=param['stop_value'],
            device=device)
        # Region-based classifier only uses benign samples to search threshold.
        # The r value is already set to the optimal. We don't need to search it.
        # detector.search_thresholds(X_val, pred_val, labels_val, verbose=0)
    else:
        raise ValueError('{} is not supported!'.format(args.defence))
    time_elapsed = time.time() - time_start
    print('Total training time:', str(datetime.timedelta(seconds=time_elapsed)))

    # Test defence
    time_start = time.time()
    X_test, labels_test = merge_and_generate_labels(adv[:n], X_benign[:n], flatten=False)
    pred_test = np.concatenate((pred_adv[:n], y_true[:n]))
    y_test = np.concatenate((y_true[:n], y_true[:n]))

    # Only MegNet uses reformer.
    X_reformed = None
    if args.defence == 'magnet':
        X_reformed, res_test = detector.detect(X_test, pred_test)
        y_pred = predict_numpy(model, X_reformed, device)
    elif args.defence == 'rc':
        y_pred = detector.detect(X_test, pred_test)
        res_test = np.zeros_like(y_pred)
    else:
        res_test = detector.detect(X_test, pred_test)
        y_pred = pred_test

    acc = acc_on_adv(y_pred[:n], y_test[:n], res_test[:n])
    if args.defence == 'rc':
        fpr = np.mean(y_pred[n:] != y_test[n:])
    else:
        fpr = np.mean(res_test[n:])
    print('Acc_on_adv:', acc)
    print('FPR:', fpr)
    time_elapsed = time.time() - time_start
    print('Total test time:', str(datetime.timedelta(seconds=time_elapsed)))

    # Save results
    suffix = '_' + args.suffix if args.suffix is not None else ''

    if args.save:
        path_result = os.path.join(args.output_path, '{}_{}{}.pt'.format(args.adv, args.defence, suffix))
        torch.save({
            'X_val': X_val,
            'y_val': np.concatenate((y_true[n:], y_true[n:])),
            'labels_val': labels_val,
            'X_test': X_test,
            'y_test': y_test,
            'labels_test': labels_test,
            'res_test': y_pred if args.defence == 'rc' else res_test,
            'X_reformed': X_reformed,
            'param': param}, path_result)
        print('Saved to:', path_result)
    else:
        print('No file is save!')
    print()
Example #11
0
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, required=True)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--adv',
                        type=str,
                        required=True,
                        help="Example: 'mnist_basic_apgd_0.3'")
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)

    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Pretrained samples:', args.adv + '_adv.npy')

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path,
                                       train=True,
                                       download=True,
                                       transform=transforms)
        dataset_test = datasets.MNIST(args.data_path,
                                      train=False,
                                      download=True,
                                      transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path,
                                         train=True,
                                         download=True,
                                         transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path,
                                        train=False,
                                        download=True,
                                        transform=transforms)
    else:
        data_path = os.path.join(args.data_path,
                                 data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X,
            y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(
            torch.from_numpy(X_train).type(torch.float32),
            torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(
            torch.from_numpy(X_test).type(torch.float32),
            torch.from_numpy(y_test).type(torch.long))

    # Note: Train set alway shuffle!
    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=True)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)

    shape_train = get_shape(loader_train.dataset)
    shape_test = get_shape(loader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)
    use_prob = True
    print('Using softmax layer:', use_prob)

    n_classes = data_params['data'][args.data]['n_classes']

    # Load model
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))
    else:
        n_features = data_params['data'][args.data]['n_features']
        model = NumericModel(n_features,
                             n_hidden=n_features * 4,
                             n_classes=n_classes,
                             use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path))

    _, acc_train = validate(model, loader_train, loss, device)
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    # The original train and test sets are no longer needed.
    tensor_train_X, tensor_train_y = get_correct_examples(model,
                                                          dataset_train,
                                                          device=device,
                                                          return_tensor=True)
    dataset_train = TensorDataset(tensor_train_X, tensor_train_y)
    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=True)
    _, acc_perfect = validate(model, loader_train, loss, device)
    print('Accuracy on {} filtered train set: {:.4f}%'.format(
        len(dataset_train), acc_perfect * 100))

    tensor_test_X, tensor_test_y = get_correct_examples(model,
                                                        dataset_test,
                                                        device=device,
                                                        return_tensor=True)
    dataset_test = TensorDataset(tensor_test_X, tensor_test_y)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_test, loss, device)
    print('Accuracy on {} filtered test set: {:.4f}%'.format(
        len(dataset_test), acc_perfect * 100))

    # Load pre-trained adversarial examples
    path_benign = os.path.join(args.output_path, args.adv + '_x.npy')
    path_adv = os.path.join(args.output_path, args.adv + '_adv.npy')
    path_y = os.path.join(args.output_path, args.adv + '_y.npy')
    X_benign = np.load(path_benign)
    adv = np.load(path_adv)
    y_true = np.load(path_y)

    dataset = TensorDataset(torch.from_numpy(X_benign),
                            torch.from_numpy(y_true))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    _, acc = validate(model, loader, loss, device)
    print('Accuracy on {} benign samples: {:.4f}%'.format(
        len(dataset), acc * 100))

    dataset = TensorDataset(torch.from_numpy(adv), torch.from_numpy(y_true))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    _, acc = validate(model, loader, loss, device)
    print('Accuracy on {} adversarial examples: {:.4f}%'.format(
        len(dataset), acc * 100))

    # Do NOT shuffle the indices, so different defences can use the same test set.
    dataset = TensorDataset(torch.from_numpy(adv))
    loader = DataLoader(dataset, batch_size=512, shuffle=False)
    pred_adv = predict(model, loader, device).cpu().detach().numpy()

    # Find the thresholds using the 2nd half
    n = len(X_benign) // 2
    # Merge benign samples and adversarial examples into one set.
    # This labels indicate a sample is an adversarial example or not.
    X_val, labels_val = merge_and_generate_labels(adv[n:],
                                                  X_benign[n:],
                                                  flatten=False)
    # The predictions for benign samples are exactly same as the true labels.
    pred_val = np.concatenate((pred_adv[n:], y_true[n:]))

    X_train = tensor_train_X.cpu().detach().numpy()
    y_train = tensor_train_y.cpu().detach().numpy()

    # Train defence
    time_start = time.time()
    detector = RegionBasedClassifier(model=model,
                                     r=0.2,
                                     sample_size=1000,
                                     n_classes=n_classes,
                                     x_min=0.0,
                                     x_max=1.0,
                                     batch_size=512,
                                     r0=0.0,
                                     step_size=0.02,
                                     stop_value=0.4,
                                     device=device)
    r_best = detector.search_thresholds(X_val, pred_val, labels_val, verbose=0)
    time_elapsed = time.time() - time_start
    print('Total training time:',
          str(datetime.timedelta(seconds=time_elapsed)))

    param = {
        "r": r_best,
        "sample_size": 1000,
        "batch_size": 512,
        "r0": 0,
        "step_size": 0.02,
        "stop_value": 0.40
    }
    path_json = os.path.join(
        'params', 'rc_param_{}_{}.json'.format(args.data, args.model))
    with open(path_json, 'w') as f:
        json.dump(param, f)
    print('Save to:', path_json)
    print()
Example #12
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, required=True, choices=['mnist', 'cifar10'])
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--param', type=str, required=True)
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)

    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)

    with open(args.param) as param_json:
        param = json.load(param_json)
    param['n_classes'] = 10
    print('Param:', param)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(args.data_path, train=False, download=True, transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path, train=False, download=True, transform=transforms)
    else:
        raise ValueError('{} is not supported.'.format(args.data))

    # Note: Train set alway shuffle!
    loader_train = DataLoader(dataset_train, batch_size=512, shuffle=True)
    loader_test = DataLoader(dataset_test, batch_size=512, shuffle=False)

    shape_train = get_shape(loader_train.dataset)
    shape_test = get_shape(loader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)
    use_prob = True
    print('Using softmax layer:', use_prob)

    # Load model
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    else:  # args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))

    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path))

    _, acc_train = validate(model, loader_train, loss, device)
    _, acc_test = validate(model, loader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    tensor_train_X, tensor_train_y = dataset2tensor(dataset_train)
    X_train = tensor_train_X.cpu().detach().numpy()
    y_train = tensor_train_y.cpu().detach().numpy()

    # Train defence
    squeezers = []
    if args.data == 'mnist':
        squeezers.append(DepthSqueezer(x_min=0.0, x_max=1.0, bit_depth=1))
        squeezers.append(MedianSqueezer(x_min=0.0, x_max=1.0, kernel_size=2))
    else:
        # CIFAR10
        squeezers.append(DepthSqueezer(x_min=0.0, x_max=1.0, bit_depth=4))
        squeezers.append(MedianSqueezer(x_min=0.0, x_max=1.0, kernel_size=2))
        squeezers.append(NLMeansColourSqueezer(x_min=0.0, x_max=1.0, h=2, templateWindowsSize=3, searchWindowSize=13))

    print('FS: # of squeezers:', len(squeezers))
    detector = FeatureSqueezingTorch(
        classifier=model,
        lr=0.001,
        momentum=0.9,
        weight_decay=5e-4,
        loss=loss,
        batch_size=128,
        x_min=0.0,
        x_max=1.0,
        squeezers=squeezers,
        n_classes=param['n_classes'],
        device=device)
    detector.fit(X_train, y_train, epochs=param['epochs'], verbose=1)

    path_fs = os.path.join(args.output_path, '{}_fs.pt'.format(args.pretrained.split('.')[0]))
    detector.save(path_fs)
    print('Saved fs to:', path_fs)
    print()
def main(seed, dataset_name, clf_name, detector_name, epsilon_lst, input_shape,
         json_param, path):
    set_seeds(SEEDS[seed])

    device = device = torch.device(
        'cuda' if torch.cuda.is_available() else 'cpu')
    print('device:', device)

    # Load classifier
    print("load the classifier")
    file_model = os.path.join(
        'result_{:}'.format(seed),
        '{:}_{:}_model.pt'.format(dataset_name, clf_name))
    if clf_name == 'dnn':
        model = BaseModel(use_prob=False).to(device)
    elif clf_name == 'resnet':
        model = Resnet(use_prob=False).to(device)
    else:
        raise ValueError("model idx unknown")
    model.load_state_dict(torch.load(file_model, map_location=device))

    file_data = os.path.join(
        'result_{:}'.format(seed),
        '{:}_{:}_apgd2_2000.pt'.format(dataset_name, clf_name))
    obj = torch.load(file_data)
    X = obj['X']
    y = obj['y']
    adv = obj['adv']

    print("undefended model acc")
    pred = predict_numpy(model, X, device)
    print('Acc on clean:', np.mean(pred == y))

    # Split data
    X_att_test = X[2000:3000].astype(np.float32)
    y_att_test = y[2000:3000].astype(np.float32)

    print("x attr shape ", X_att_test.shape)

    #################################################################
    print("Load Magnet")
    with open(json_param) as j:
        param = json.load(j)

    print("before load magnet")
    model_with_reformer_nn_module, detector_nn_module, full_magnet_orig  = \
        loadmagnet(dataset_name, clf_name,param, device,path, model)

    print("Magnet loaded")

    loss = torch.nn.CrossEntropyLoss()
    # this one return the logits
    art_classifier = PyTorchClassifier(model=model_with_reformer_nn_module,
                                       loss=loss,
                                       input_shape=input_shape,
                                       nb_classes=10,
                                       optimizer=None)

    # y_pred = model_with_reformer_nn_module(X)
    # print("model_with_reformer_nn_module", y_pred.shape)

    y_pred = art_classifier.predict(X)
    print("art_classifier", y_pred.shape)

    print("check full magnet ")
    _, y_pred = full_magnet_orig.detect(X)
    print("full magnet", y_pred.shape)

    print("check detector nn module")
    # correcly return an array with the logits
    y_pred = detector_nn_module(X)
    print("y pred ", y_pred)
    print("detector_nn_module", y_pred.shape)

    print("create pytorch detector")
    # must be only the detector
    art_detector = PyTorchClassifier(model=detector_nn_module,
                                     loss=loss,
                                     input_shape=input_shape,
                                     nb_classes=2,
                                     optimizer=None)

    print("check art detector")
    y_pred = art_detector.predict(X + 1000)
    print("detector_nn_module", y_pred.shape)
    print("art detector ok")

    print("y pred ", y_pred)
    print("detected by detector used by attack ",
          np.mean(y_pred.argmax(axis=1) == 1))

    clip_fun = None
    #################################################################

    pred_folder = 'result_{:}/predictions_wb_eval/{:}_{:}_{:}'.format(
        seed, dataset_name, clf_name, detector_name)

    print("compute prediction for samples at epsilon 0")
    x = X_att_test[:10]
    y = y_att_test[:10]

    # compute and save predictions
    cmpt_and_save_predictions(art_classifier, full_magnet_orig, art_detector,
                              device, x, y, pred_folder, 0)

    for eps in epsilon_lst:

        print("epsilon ", eps)

        print("detector threshold ", detector_nn_module.detector.threshold)

        attack = AutoProjectedGradientDescentDetectorsMagnet(
            estimator=art_classifier,
            detector=art_detector,
            detector_th=0,
            detector_clip_fun=clip_fun,
            loss_type='logits_difference',
            batch_size=128,
            norm=2,
            eps=eps,
            eps_step=0.9,
            beta=1.0,
            max_iter=100)

        adv_x = attack.generate(x=x, y=None)

        # compute and save predictions
        cmpt_and_save_predictions(art_classifier, full_magnet_orig,
                                  art_detector, device, adv_x, y, pred_folder,
                                  eps)
Example #14
0
def main(seed, dataset_name, clf_name, detector_name, epsilon_lst,input_shape):
    set_seeds(SEEDS[seed])

    device = device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('device:', device)

    # Load classifier
    print("load the classifier")
    file_model = os.path.join('result_{:}'.format(seed),
                              '{:}_{:}_model.pt'.format(dataset_name,
                                                        clf_name))
    if clf_name == 'dnn':
        model = BaseModel(use_prob=False).to(device)
    elif clf_name == 'resnet':
        model = Resnet(use_prob=False).to(device)
    else:
        raise ValueError("model idx unknown")
    model.load_state_dict(torch.load(file_model, map_location=device))

    file_data = os.path.join('result_{:}'.format(seed),
                             '{:}_{:}_apgd2_2000.pt'.format(dataset_name,
                                                        clf_name))
    obj = torch.load(file_data)
    X = obj['X']
    y = obj['y']
    adv = obj['adv']

    pred = predict_numpy(model, X, device)
    print('Acc on clean:', np.mean(pred == y))

    pred = predict_numpy(model, adv, device)
    print('Acc on adv (epsilon 2):', np.mean(pred == y))

    # Split data
    X_att_test = X[2000:3000]
    y_att_test = y[2000:3000]

    print("x attr shape ", X_att_test.shape)

    #########################################################################
    # Load baard
    print("Load baard")
    file_baard_train = os.path.join(
        'result_{:}'.format(seed), '{:}_{:}_baard_s1_train_data.pt'.format(
                                                        dataset_name,
                                                        clf_name))
    obj = torch.load(file_baard_train)
    X_baard_train_s1 = obj['X_s1']
    X_baard_train = obj['X']
    y_baard_train = obj['y']

    stages = []
    stages.append(ApplicabilityStage(n_classes=10, quantile=1., verbose=False))
    stages.append(ReliabilityStage(n_classes=10, k=10, quantile=1., verbose=False))
    stages.append(DecidabilityStage(n_classes=10, k=100, quantile=1., verbose=False))
    detector = BAARDOperator(stages=stages)

    detector.stages[0].fit(X_baard_train_s1, y_baard_train)
    for stage in detector.stages[1:]:
        stage.fit(X_baard_train, y_baard_train)

    print("load baard's thresholds")
    file_baard_threshold = os.path.join(
        'result_{:}'.format(seed), '{:}_{:}_baard_threshold.pt'.format(
            dataset_name,
                                                        clf_name))

    thresholds = torch.load(file_baard_threshold)['thresholds']
    detector.load(file_baard_threshold)

    print("load the surrogate")
    file_surro = os.path.join('result_{:}'.format(seed),
                              '{:}_{:}_baard_surrogate.pt'.format(
                                  dataset_name,
                                                        clf_name))
    surrogate = get_pretrained_surrogate(file_surro, device)

    loss = torch.nn.CrossEntropyLoss()
    optimizer_clf = torch.optim.SGD(
        model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    art_classifier = PyTorchClassifier(
        model=model,
        loss=loss,
        input_shape=input_shape,
        nb_classes=10,
        optimizer=optimizer_clf
    )

    optimizer_sur = torch.optim.SGD(
        surrogate.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    art_detector = PyTorchClassifier(
        model=surrogate,
        loss=loss,
        input_shape=input_shape,
        nb_classes=2,
        optimizer=optimizer_sur
    )

    clip_fun = BAARD_Clipper(detector)

    #########################################################################

    pred_folder = 'result_{:}/predictions_wb_eval/{:}_{:}_{:}'.format(seed,
                                                              dataset_name,
                                                       clf_name, detector_name)

    print("compute prediction for samples at epsilon 0")
    x = X_att_test[:10]
    y = y_att_test[:10]

    # compute and save predictions
    cmpt_and_save_predictions(model, art_detector, detector, device, x, y,
                              pred_folder, 0)

    for eps in epsilon_lst:

        print("epsilon ", eps)

        if dataset_name == 'mnist':
            loss_multiplier = 1. / 36.
        else:
            loss_multiplier = 0.1

        attack = AutoProjectedGradientDescentDetectors(
            estimator=art_classifier,
            detector=art_detector,
            detector_th=0,
            detector_clip_fun=clip_fun,
            loss_type='logits_difference',
            batch_size=128,
            norm=2,
            eps=eps,
            eps_step=0.9,
            beta=0.5,
            max_iter=100)

        adv_x = attack.generate(x=x, y=None)

        # compute and save predictions
        cmpt_and_save_predictions(model, art_detector, detector, device, adv_x,
                                  y, pred_folder, eps)