Example #1
0
        roc_max.append(roc_auc_score(y_test, comb_by_max))
        prn_max.append(precision_n_scores(y_test, comb_by_max))
        print('ite', t + 1, 'comb by max,', 'ROC:',
              roc_auc_score(y_test, comb_by_max), 'precision@n:',
              precision_n_scores(y_test, comb_by_max))

        # combination by aom
        comb_by_aom = aom(test_scores_norm, 5, 20)
        roc_aom.append(roc_auc_score(y_test, comb_by_aom))
        prn_aom.append(precision_n_scores(y_test, comb_by_aom))
        print('ite', t + 1, 'comb by aom,', 'ROC:',
              roc_auc_score(y_test, comb_by_aom), 'precision@n:',
              precision_n_scores(y_test, comb_by_aom))

        # combination by moa
        comb_by_moa = moa(test_scores_norm, 5, 20)
        roc_moa.append(roc_auc_score(y_test, comb_by_moa))
        prn_moa.append(precision_n_scores(y_test, comb_by_moa))
        print('ite', t + 1, 'comb by moa,', 'ROC:',
              roc_auc_score(y_test, comb_by_moa), 'precision@n:',
              precision_n_scores(y_test, comb_by_moa))

        print()

    ##########################################################################
    print('summary of {ite} iterations'.format(ite=ite))
    print('comb by mean, ROC: {roc}, precision@n: {prn}'.format(
        roc=np.mean(roc_mean), prn=np.mean(prn_mean)))
    print('comb by max, ROC: {roc}, precision@n: {prn}'.format(
        roc=np.mean(roc_max), prn=np.mean(prn_max)))
    print('comb by aom, ROC: {roc}, precision@n: {prn}'.format(
Example #2
0
                                      axis=1)
    test_target_list.extend(
        [target_test_weighted_pear, target_test_weighted_euc])
    method_list.extend([
        'w_mean_pear',
        'w_mean_euc',
    ])

    # generate threshold sum
    target_test_threshold = np.sum(test_scores_norm.clip(0), axis=1)
    test_target_list.append(target_test_threshold)
    method_list.append('threshold')

    # generate average of maximum (AOM) and maximum of average (MOA)
    target_test_aom = aom(test_scores_norm, n_buckets, n_clf)
    target_test_moa = moa(test_scores_norm, n_buckets, n_clf)
    test_target_list.extend([target_test_aom, target_test_moa])
    method_list.extend(['aom', 'moa'])
    ###################################################################
    # use mean as the pseudo target
    for k in final_k_list:
        tree = KDTree(X_train_norm)
        dist_arr, ind_arr = tree.query(X_test_norm, k=k)

        m_list = [
            'a_dist_d', 'a_dist_r', 'a_dist_n', 'a_pear_d', 'a_pear_r',
            'a_pear_n'
        ]

        # initialize different buckets
        pred_scores_best = np.zeros([X_test.shape[0], len(m_list)])