Example #1
0
def validate(net, device, val_data, batches_per_epoch):
    """
    Run validation.
    :param net: Network
    :param device: Torch device
    :param val_data: Validation Dataset
    :param batches_per_epoch: Number of batches to run
    :return: Successes, Failures and Losses
    """
    net.eval()

    results = {
        'correct': 0,
        'failed': 0,
        'loss': 0,
        'losses': {

        }
    }

    ld = len(val_data)

    with torch.no_grad():
        batch_idx = 0
        while batch_idx < batches_per_epoch:
            for x, y, didx, rot, zoom_factor in val_data:
                batch_idx += 1
                if batches_per_epoch is not None and batch_idx >= batches_per_epoch:
                    break

                xc = x.to(device)
                yc = [yy.to(device) for yy in y]
                lossd = net.compute_loss(xc, yc)

                loss = lossd['loss']

                results['loss'] += loss.item()/ld
                for ln, l in lossd['losses'].items():
                    if ln not in results['losses']:
                        results['losses'][ln] = 0
                    results['losses'][ln] += l.item()/ld

                q_out, ang_out, w_out = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
                                                            lossd['pred']['sin'], lossd['pred']['width'])

                s = evaluation.calculate_iou_match(q_out, ang_out,
                                                   val_data.dataset.get_gtbb(didx, rot, zoom_factor),
                                                   no_grasps=1,
                                                   grasp_width=w_out,
                                                   )

                if s:
                    results['correct'] += 1
                else:
                    results['failed'] += 1

    return results
Example #2
0
    results = {'correct': 0, 'failed': 0}

    if args.jacquard_output:
        jo_fn = args.network + '_jacquard_output.txt'
        with open(jo_fn, 'w') as f:
            pass

    with torch.no_grad():
        for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
            logging.info('Processing {}/{}'.format(idx + 1, len(test_data)))
            xc = x.to(device)
            yc = [yi.to(device) for yi in y]
            lossd = net.compute_loss(xc, yc)

            q_img, ang_img, width_img = post_process_output(
                lossd['pred']['pos'], lossd['pred']['cos'],
                lossd['pred']['sin'], lossd['pred']['width'])

            if args.iou_eval:
                s = evaluation.calculate_iou_match(
                    q_img,
                    ang_img,
                    test_data.dataset.get_gtbb(didx, rot, zoom),
                    no_grasps=args.n_grasps,
                    grasp_width=width_img,
                )
                if s:
                    results['correct'] += 1
                else:
                    results['failed'] += 1
Example #3
0
    if args.jacquard_output:
        jo_fn = args.network + '_jacquard_output.txt'
        with open(jo_fn, 'w') as f:
            pass

    with torch.no_grad():
        if args.dataset == "my" or args.dataset == "my2" or args.dataset == "my_crop":
            for idx, (x, didx, rot, zoom) in enumerate(test_data):
                logging.info('Processing {}/{}'.format(idx + 1,
                                                       len(test_data)))
                xc = x.to(device)  #data
                print('shape of xc:', xc.shape)
                # Approach 2: alternative to "lossd = net.compute_loss(xc, yc)"
                _pos_output, _cos_output, _sin_output, _width_output = net.forward(
                    xc)  # only x(data) is used
                tq_img, tang_img, twidth_img = post_process_output(
                    _pos_output, _cos_output, _sin_output, _width_output)
                if args.vis:
                    evaluation.plot_output(
                        test_data.dataset.get_rgb(didx,
                                                  rot,
                                                  zoom,
                                                  normalise=False),
                        test_data.dataset.get_depth(didx, rot, zoom),
                        tq_img,
                        tang_img,
                        no_grasps=args.n_grasps,
                        grasp_width_img=twidth_img)
        else:
            for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
                # data(x), label(y)=(pos, cos, sin, width), idx, rot, zoom_factor
                logging.info('Processing {}/{}'.format(idx + 1,