def make_one_net_model(self, cf, in_shape, loss, metrics, optimizer): # Create the *Keras* model if cf.model_name == 'fcn8': model = build_fcn8(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=cf.load_imageNet) elif cf.model_name == 'unet': model = build_unet(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None) elif cf.model_name == 'segnet_basic': model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None, basic=True) elif cf.model_name == 'segnet_vgg': model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None, basic=False) elif cf.model_name == 'resnetFCN': model = build_resnetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=cf.load_imageNet) elif cf.model_name == 'densenetFCN': model = build_densenetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None) elif cf.model_name == 'lenet': model = build_lenet(in_shape, cf.dataset.n_classes, cf.weight_decay) elif cf.model_name == 'alexNet': model = build_alexNet(in_shape, cf.dataset.n_classes, cf.weight_decay) elif cf.model_name == 'vgg16': model = build_vgg(in_shape, cf.dataset.n_classes, 16, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'vgg19': model = build_vgg(in_shape, cf.dataset.n_classes, 19, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'resnet50': model = build_resnet50(in_shape, cf.dataset.n_classes, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'InceptionV3': model = build_inceptionV3(in_shape, cf.dataset.n_classes, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'yolo': model = build_yolo(in_shape, cf.dataset.n_classes, cf.dataset.n_priors, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from, tiny=False) elif cf.model_name == 'tiny-yolo': model = build_yolo(in_shape, cf.dataset.n_classes, cf.dataset.n_priors, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from, tiny=True) else: raise ValueError('Unknown model') # Load pretrained weights if cf.load_pretrained: print(' loading model weights from: ' + cf.weights_file + '...') model.load_weights(cf.weights_file, by_name=True) # Compile model model.compile(loss=loss, metrics=metrics, optimizer=optimizer) # Show model structure if cf.show_model: model.summary() plot(model, to_file=os.path.join(cf.savepath, 'model.png')) # Output the model print (' Model: ' + cf.model_name) # model is a keras model, Model is a class wrapper so that we can have # other models (like GANs) made of a pair of keras models, with their # own ways to train, test and predict return One_Net_Model(model, cf, optimizer)
def make_one_net_model(self, cf, in_shape, loss, metrics, optimizer): # Assertions if 'tiramisu' in cf.model_name: input_rows, input_cols = cf.target_size_train[0], cf.target_size_train[1] multiple = 2 ** 5 # 5 transition blocks if input_rows is not None: if input_rows % multiple != 0: raise ValueError('The number of rows of the input data must be a multiple of {}'.format(multiple)) if input_cols is not None: if input_cols % multiple != 0: raise ValueError( 'The number of columns of the input data must be a multiple of {}'.format(multiple)) # Create the *Keras* model if cf.model_name == 'fcn8': model = build_fcn8(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, # path_weights='weights/pascal-fcn8s-dag.mat') path_weights=None) elif cf.model_name == 'dilation': model = build_dilation(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, # path_weights='weights/pascal-fcn8s-dag.mat') path_weights=None) elif cf.model_name == 'segnet_basic': model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None, basic=True) elif cf.model_name == 'segnet_vgg': model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from, path_weights=None, basic=False) elif cf.model_name == 'densenetFCN': model = build_densenetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'vgg16': model = build_vgg(in_shape, cf.dataset.n_classes, 16, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'vgg19': model = build_vgg(in_shape, cf.dataset.n_classes, 19, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'resnet50': model = build_resnet50(in_shape, cf.dataset.n_classes, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'yolo': model = build_yolo(in_shape, cf.dataset.n_classes, cf.dataset.n_priors, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from, tiny=False) elif cf.model_name == 'tiny-yolo': model = build_yolo(in_shape, cf.dataset.n_classes, cf.dataset.n_priors, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from, tiny=True) elif cf.model_name == 'ssd300': model = build_ssd300(in_shape, cf.dataset.n_classes + 1, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'deeplabV2': model = build_deeplabv2(in_shape, nclasses=cf.dataset.n_classes, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from, weight_decay=cf.weight_decay) elif cf.model_name == 'ssd300': model = build_ssd300(in_shape, cf.dataset.n_classes + 1, cf.weight_decay, load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'tiramisu_fc56': model = build_tiramisu_fc56(in_shape, cf.dataset.n_classes, cf.weight_decay, compression=0, dropout=0.2, nb_filter=48, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'tiramisu_fc67': model = build_tiramisu_fc67(in_shape, cf.dataset.n_classes, cf.weight_decay, compression=0, dropout=0.2, nb_filter=48, freeze_layers_from=cf.freeze_layers_from) elif cf.model_name == 'tiramisu_fc103': model = build_tiramisu_fc103(in_shape, cf.dataset.n_classes, cf.weight_decay, compression=0, dropout=0.2, nb_filter=48, freeze_layers_from=cf.freeze_layers_from) else: raise ValueError('Unknown model') # Load pretrained weights if cf.load_pretrained: print(' loading model weights from: ' + cf.weights_file + '...') model.load_weights(cf.weights_file, by_name=True) # Compile model model.compile(loss=loss, metrics=metrics, optimizer=optimizer) # Show model structure if cf.show_model: model.summary() plot(model, to_file=os.path.join(cf.savepath, 'model.png')) # Output the model print (' Model: ' + cf.model_name) # model is a keras model, Model is a class wrapper so that we can have # other models (like GANs) made of a pair of keras models, with their # own ways to train, test and predict return One_Net_Model(model, cf, optimizer)