Example #1
0
    def make_one_net_model(self, cf, in_shape, loss, metrics, optimizer):
        # Create the *Keras* model
        if cf.model_name == 'fcn8':
            model = build_fcn8(in_shape, cf.dataset.n_classes, cf.weight_decay,
                               freeze_layers_from=cf.freeze_layers_from,
                               path_weights=cf.load_imageNet)
        elif cf.model_name == 'unet':
            model = build_unet(in_shape, cf.dataset.n_classes, cf.weight_decay,
                               freeze_layers_from=cf.freeze_layers_from,
                               path_weights=None)
        elif cf.model_name == 'segnet_basic':
            model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                 freeze_layers_from=cf.freeze_layers_from,
                                 path_weights=None, basic=True)
        elif cf.model_name == 'segnet_vgg':
            model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                 freeze_layers_from=cf.freeze_layers_from,
                                 path_weights=None, basic=False)
        elif cf.model_name == 'resnetFCN':
            model = build_resnetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                    freeze_layers_from=cf.freeze_layers_from,
                                    path_weights=cf.load_imageNet)
        elif cf.model_name == 'densenetFCN':
            model = build_densenetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                      freeze_layers_from=cf.freeze_layers_from,
                                      path_weights=None)
        elif cf.model_name == 'lenet':
            model = build_lenet(in_shape, cf.dataset.n_classes, cf.weight_decay)
        elif cf.model_name == 'alexNet':
            model = build_alexNet(in_shape, cf.dataset.n_classes, cf.weight_decay)
        elif cf.model_name == 'vgg16':
            model = build_vgg(in_shape, cf.dataset.n_classes, 16, cf.weight_decay,
                              load_pretrained=cf.load_imageNet,
                              freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'vgg19':
            model = build_vgg(in_shape, cf.dataset.n_classes, 19, cf.weight_decay,
                              load_pretrained=cf.load_imageNet,
                              freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'resnet50':
            model = build_resnet50(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                   load_pretrained=cf.load_imageNet,
                                   freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'InceptionV3':
            model = build_inceptionV3(in_shape, cf.dataset.n_classes,
                                      cf.weight_decay,
                                      load_pretrained=cf.load_imageNet,
                                      freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'yolo':
            model = build_yolo(in_shape, cf.dataset.n_classes,
                               cf.dataset.n_priors,
                               load_pretrained=cf.load_imageNet,
                               freeze_layers_from=cf.freeze_layers_from, tiny=False)
        elif cf.model_name == 'tiny-yolo':
            model = build_yolo(in_shape, cf.dataset.n_classes,
                               cf.dataset.n_priors,
                               load_pretrained=cf.load_imageNet,
                               freeze_layers_from=cf.freeze_layers_from, tiny=True)
        else:
            raise ValueError('Unknown model')

        # Load pretrained weights
        if cf.load_pretrained:
            print('   loading model weights from: ' + cf.weights_file + '...')
            model.load_weights(cf.weights_file, by_name=True)

        # Compile model
        model.compile(loss=loss, metrics=metrics, optimizer=optimizer)

        # Show model structure
        if cf.show_model:
            model.summary()
            plot(model, to_file=os.path.join(cf.savepath, 'model.png'))

        # Output the model
        print ('   Model: ' + cf.model_name)
        # model is a keras model, Model is a class wrapper so that we can have
        # other models (like GANs) made of a pair of keras models, with their
        # own ways to train, test and predict
        return One_Net_Model(model, cf, optimizer)
Example #2
0
    def make_one_net_model(self, cf, in_shape, loss, metrics, optimizer):
        # Assertions
        if 'tiramisu' in cf.model_name:
            input_rows, input_cols = cf.target_size_train[0], cf.target_size_train[1]
            multiple = 2 ** 5  # 5 transition blocks
            if input_rows is not None:
                if input_rows % multiple != 0:
                    raise ValueError('The number of rows of the input data must be a multiple of {}'.format(multiple))
            if input_cols is not None:
                if input_cols % multiple != 0:
                    raise ValueError(
                        'The number of columns of the input data must be a multiple of {}'.format(multiple))

        # Create the *Keras* model
        if cf.model_name == 'fcn8':
            model = build_fcn8(in_shape, cf.dataset.n_classes, cf.weight_decay,
                               freeze_layers_from=cf.freeze_layers_from,
                               # path_weights='weights/pascal-fcn8s-dag.mat')
                               path_weights=None)
        elif cf.model_name == 'dilation':
            model = build_dilation(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                   freeze_layers_from=cf.freeze_layers_from,
                                   # path_weights='weights/pascal-fcn8s-dag.mat')
                                   path_weights=None)
        elif cf.model_name == 'segnet_basic':
            model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                 freeze_layers_from=cf.freeze_layers_from,
                                 path_weights=None, basic=True)
        elif cf.model_name == 'segnet_vgg':
            model = build_segnet(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                 freeze_layers_from=cf.freeze_layers_from,
                                 path_weights=None, basic=False)
        elif cf.model_name == 'densenetFCN':
            model = build_densenetFCN(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                      freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'vgg16':
            model = build_vgg(in_shape, cf.dataset.n_classes, 16, cf.weight_decay,
                              load_pretrained=cf.load_imageNet,
                              freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'vgg19':
            model = build_vgg(in_shape, cf.dataset.n_classes, 19, cf.weight_decay,
                              load_pretrained=cf.load_imageNet,
                              freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'resnet50':
            model = build_resnet50(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                   load_pretrained=cf.load_imageNet,
                                   freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'yolo':
            model = build_yolo(in_shape, cf.dataset.n_classes,
                               cf.dataset.n_priors,
                               load_pretrained=cf.load_imageNet,
                               freeze_layers_from=cf.freeze_layers_from, tiny=False)
        elif cf.model_name == 'tiny-yolo':
            model = build_yolo(in_shape, cf.dataset.n_classes,
                               cf.dataset.n_priors,
                               load_pretrained=cf.load_imageNet,
                               freeze_layers_from=cf.freeze_layers_from, tiny=True)
        elif cf.model_name == 'ssd300':
            model = build_ssd300(in_shape, cf.dataset.n_classes + 1, cf.weight_decay,
                                 load_pretrained=cf.load_imageNet, freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'deeplabV2':
            model = build_deeplabv2(in_shape, nclasses=cf.dataset.n_classes, load_pretrained=cf.load_imageNet,
                                    freeze_layers_from=cf.freeze_layers_from, weight_decay=cf.weight_decay)
        elif cf.model_name == 'ssd300':
            model = build_ssd300(in_shape, cf.dataset.n_classes + 1, cf.weight_decay,
                                 load_pretrained=cf.load_imageNet,
                                 freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'tiramisu_fc56':
            model = build_tiramisu_fc56(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                        compression=0, dropout=0.2, nb_filter=48,
                                        freeze_layers_from=cf.freeze_layers_from)
        elif cf.model_name == 'tiramisu_fc67':
            model = build_tiramisu_fc67(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                        compression=0, dropout=0.2, nb_filter=48,
                                        freeze_layers_from=cf.freeze_layers_from)

        elif cf.model_name == 'tiramisu_fc103':
            model = build_tiramisu_fc103(in_shape, cf.dataset.n_classes, cf.weight_decay,
                                         compression=0, dropout=0.2, nb_filter=48,
                                         freeze_layers_from=cf.freeze_layers_from)

        else:
            raise ValueError('Unknown model')

        # Load pretrained weights
        if cf.load_pretrained:
            print('   loading model weights from: ' + cf.weights_file + '...')
            model.load_weights(cf.weights_file, by_name=True)

        # Compile model
        model.compile(loss=loss, metrics=metrics, optimizer=optimizer)

        # Show model structure
        if cf.show_model:
            model.summary()
            plot(model, to_file=os.path.join(cf.savepath, 'model.png'))

        # Output the model
        print ('   Model: ' + cf.model_name)
        # model is a keras model, Model is a class wrapper so that we can have
        # other models (like GANs) made of a pair of keras models, with their
        # own ways to train, test and predict
        return One_Net_Model(model, cf, optimizer)