args = parser.parse_args() args.cuda_device = [0] # [0, 1, 2, 3] args.label_num = 2 args.threshold = 0.5 model_name = model_names[args.model] torch.backends.cudnn.enabled = False logger.debug('------------------------') logger.debug('------------------------') logger.debug('-------Parameters-------') logger.debug('{}: {}'.format('model', model_name)) logger.debug(args) # load data # TODO: file path reader = EventDataReader() train_dataset = ensure_list(reader.read('./dataset/1_{}/{}/train.data'.format(args.file_dir, args.event_type))) eval_dataset = ensure_list(reader.read('./dataset/1_{}/{}/eval.data'.format(args.file_dir, args.event_type))) with open('./dataset/1_{}/{}/test.data'.format(args.file_dir, args.event_type), 'r', encoding='utf-8') as f: test_dataset = json.loads(f.read()) # reader = EventDataReader() # train_dataset = ensure_list(reader.read(os.path.join('.', 'dataset', 'example', 'train.data'))) # eval_dataset = ensure_list(reader.read(os.path.join('.', 'dataset', 'example', 'train.data'))) # with open(os.path.join('.', 'dataset', 'example', 'train.data'), 'r', encoding='utf-8') as f: # test_dataset = json.loads(f.read()) # get vocabulary and embedding vocab = Vocabulary.from_instances(train_dataset + eval_dataset, min_count={"trigger_0": 0, "trigger_agent_0": 0,
# init parameters parser = argparse.ArgumentParser() args = parser.parse_args() args.embedding_size = 300 args.learning_rate = 1e-4 args.batch_size = 1 args.epochs = 10 args.patience = 1 args.cuda_device = -1 args.hidden_size = 8 args.hop_num = 6 args.label_num = 2 args.threshold = 0.5 # load data reader = EventDataReader() train_dataset = ensure_list( reader.read(os.path.join('..', 'dataset', 'example', 'train.data'))) eval_dataset = ensure_list( reader.read(os.path.join('..', 'dataset', 'example', 'train.data'))) test_dataset = ensure_list( reader.read(os.path.join('..', 'dataset', 'example', 'train.data'))) # get vocabulary and embedding vocab = Vocabulary.from_instances(train_dataset + eval_dataset, min_count={ "trigger_0": 0, "trigger_agent_0": 0, "agent_attri_0": 0, "trigger_object_0": 0, "object_attri_0": 0,
event_type = [-1] args.embedding_size = 300 args.learning_rate = 1e-3 args.cuda_device = [0] args.hidden_size = 32 args.hop_num = 3 args.label_num = 2 args.threshold = 0.5 # 读取文件 for et in event_type: reader = EventDataReader() train_dataset = ensure_list( reader.read(os.path.join('.', 'dataset', '1_4', str(et), 'train.data'))) eval_dataset = ensure_list( reader.read(os.path.join('.', 'dataset', '1_4', str(et), 'eval.data'))) with open(os.path.join('.', 'dataset', '1_4', str(et), 'test.data'), 'r', encoding='utf-8') as f: test_dataset = json.loads(f.read()) print('load done') vocab = Vocabulary.from_instances(train_dataset + eval_dataset, min_count={ "trigger_0": 0, "trigger_agent_0": 0,