def get_model(): pretrain_model = "/Users/yangjiang/temp/gpu1/FaceBoxes.pth" num_classes = CONFIG["num_classes"] params = torch.load(pretrain_model, map_location="cpu") model = FaceBoxes(num_classes, "test") model.load_state_dict(params) model.eval() return model
def __init__(self, **opt): net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector net = load_model(net, opt.get("weights", 'weights/FaceBoxes.pth'), True) net.eval() self.net = net self.top_k = opt.get('top_k', 5000) self.confidence_threshold = opt.get('confidence_threshold', 0.05) self.nms_threshold = opt.get('nms_threshold', 0.3) self.keep_top_k = opt.get('keep_top_k', 750)
def load_face_model(self): torch.set_grad_enabled(False) # net and model net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector net = load_model(net, self.args.trained_model, self.args.cpu) net.eval() cudnn.benchmark = True self.device = torch.device("cpu" if self.args.cpu else "cuda") self.net = net.to(self.device)
class Detect(object): def __init__(self, path, device): self.net = FaceBoxes(phase='test', size=None, num_classes=2).to(device) self.net = load_model(self.net, path, False) self.net.eval() self.device = device def get_bbox(self, img_raw): img = torch.FloatTensor(img_raw).to(self.device) im_height, im_width, _ = img.size() scale = torch.FloatTensor([im_width, im_height, im_width, im_height]).to(self.device) img -= torch.FloatTensor((104, 117, 123)).to(self.device) img = img.permute(2, 0, 1).unsqueeze(0) loc, conf = self.net(img) # forward pass priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(self.device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] # ignore low scores inds = np.where(scores > 0.05)[0] boxes = boxes[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:5000] boxes = boxes[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) # keep = py_cpu_nms(dets, args.nms_threshold) keep = nms(dets, 0.3, force_cpu=False) dets = dets[keep, :] # keep top-K faster NMS dets = dets[:750, :] bboxes = [] for b in dets: if b[4] < 0.65: continue b = list(map(int, b)) bboxes.append((b[0], b[1], b[2], b[3])) return bboxes
def load_faceboxes(): """ Load FaceBoxes model and weight in pytorch """ print('---------------------------------------------------') pretrained_path = 'weights/FaceBoxes.pth' net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector net = load_model(net, pretrained_path) net.eval() print('Finished loading model') print('---------------------------------------------------') return net.cpu()
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model if __name__ == '__main__': torch.set_grad_enabled(False) # net and model net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector net = load_model(net, args.trained_model, args.cpu) net.eval() print('Finished loading model!') print(net) cudnn.benchmark = True device = torch.device("cpu" if args.cpu else "cuda") net = net.to(device) # save file if not os.path.exists(args.save_folder): os.makedirs(args.save_folder) fw = open(os.path.join(args.save_folder, args.dataset + '_dets.txt'), 'w') # testing dataset testset_folder = os.path.join('data', args.dataset, 'images/') testset_list = os.path.join('data', args.dataset, 'img_list.txt') with open(testset_list, 'r') as fr:
chkpt = torch.load(ops.landmarks_model, map_location=lambda storage, loc: storage) landmarks_model.load_state_dict(chkpt) landmarks_model.eval() # 设置为前向推断模式 print('load landmarks model : {}'.format(ops.landmarks_model)) print( '\n/******************* landmarks model acc ******************/') acc_model(ops, landmarks_model) landmarks_model = landmarks_model.to(device) #--------------------------------------------------------------------------- 构建人脸检测模型 # detect_model detect_model = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector detect_model = load_model(detect_model, ops.detect_model, True) detect_model.eval() print('\n/******************* detect model acc ******************/') acc_model(ops, detect_model) detect_model = detect_model.to(device) print('Finished loading model!') # print(detect_model) detect_model = detect_model.to(device) video_capture = cv2.VideoCapture(ops.test_path) resize = 1 with torch.no_grad(): idx = 0 while True:
class FaceDetector(object): ''' Class for face detection ''' def __init__(self, trained_model, cpu=True, nms_threshold=0.5, top_k=1000, confidence_threshold=0.8, keep_top_k=10): super(FaceDetector, self).__init__() self.trained_model = trained_model self.net = FaceBoxes(phase='test', size=None, num_classes=2) self.net = load_model(self.net, trained_model, cpu) self.net.eval() print('Finished loading model', trained_model) self.device = torch.device("cpu" if cpu else "cuda") self.net = self.net.to(self.device) self.nms_threshold = nms_threshold self.top_k = top_k self.confidence_threshold = confidence_threshold self.keep_top_k = keep_top_k self.cpu = cpu def predict(self, img_name): img = np.float32(cv2.imread(img_name, cv2.IMREAD_COLOR)) resize = 1 if resize != 1: img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) im_height, im_width, _ = img.shape scale = torch.Tensor( [img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(self.device) scale = scale.to(self.device) _t = {'forward_pass': Timer(), 'misc': Timer()} _t['forward_pass'].tic() loc, conf = self.net(img) # forward pass _t['forward_pass'].toc() _t['misc'].tic() priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(self.device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.data.cpu().numpy()[:, 1] # ignore low scores inds = np.where(scores > self.confidence_threshold)[0] boxes = boxes[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:self.top_k] boxes = boxes[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) #keep = py_cpu_nms(dets, self.nms_threshold) keep = nms(dets, self.nms_threshold, force_cpu=self.cpu) dets = dets[keep, :] # keep top-K faster NMS dets = dets[:self.keep_top_k, :] _t['misc'].toc() return dets
device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model model = FaceBoxes(phase='test', size=None, num_classes=2) device = torch.device("cuda") model = load_model(model, trained_model_path) model = model.to(device) model.eval() image_path = '/media/haoxue/WD/FaceBoxes.PyTorch/data/FDDB/images/2002/08/26/big/img_265.jpg' img = np.float32(cv2.imread(image_path, cv2.IMREAD_COLOR)) im_height, im_width, _ = img.shape scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) # if args.cuda: img = img.cuda() scale = scale.cuda() out = model(img) priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test') priors = priorbox.forward()
def faceboxes(img_raw, cur_frame_counter): img = np.float32(img_raw) torch.set_grad_enabled(False) # net and model net = FaceBoxes(phase='test', size=None, num_classes=2) # initialize detector net = load_model(net, args.trained_model, args.cpu) net.eval() # print('Finished loading model!') # print(net) cudnn.benchmark = True device = torch.device("cpu" if args.cpu else "cuda") net = net.to(device) # testing scale resize = 2 _t = {'forward_pass': Timer(), 'misc': Timer()} # testing begin if resize != 1: img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) im_height, im_width, _ = img.shape scale = torch.Tensor( [img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) # print(img) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(device) scale = scale.to(device) loc, conf = net(img) # forward pass # print(loc.size(),conf.size()) priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] # ignore low scores inds = np.where(scores > args.confidence_threshold)[0] boxes = boxes[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:args.top_k] boxes = boxes[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) # keep = py_cpu_nms(dets, args.nms_threshold) keep = nms(dets, args.nms_threshold, force_cpu=args.cpu) dets = dets[keep, :] # keep top-K faster NMS dets = dets[:args.keep_top_k, :] _t['misc'].toc() outputs_useful = [] for b in dets: output_traffic = {} if b[4] < args.vis_thres: continue b = list(map(int, b)) (left, right, top, bottom) = (b[0], b[2], b[1], b[3]) label_str = 'face' output_traffic[label_str] = [left, right, top, bottom] outputs_useful.append(output_traffic) # show image if args.show_image: for b in dets: if b[4] < args.vis_thres: continue text = "{:.4f}".format(b[4]) b = list(map(int, b)) cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2) cx = b[0] cy = b[1] + 12 # cv2.putText(img_raw, text, (cx, cy), # cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255)) cv2.imwrite('boxes/' + str(cur_frame_counter) + '.jpg', img_raw) return outputs_useful
class FaceBoxDetector: def __init__(self, min_score=0.9, use_gpu=True): # Minimum score to consider as a detection. self.score_min = min_score self.net = FaceBoxes(phase='test', size=None, num_classes=2) self.use_gpu = use_gpu self.logger = Logger() def load_model(self, path_to_model): self.logger.field('Loading pretrained model from', path_to_model) device = torch.cuda.current_device() pretrained_dict = torch.load(path_to_model, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = self.remove_prefix(pretrained_dict, 'module.') self.check_keys(self.net, pretrained_dict) self.net.load_state_dict(pretrained_dict, strict=False) self.net.eval() if self.use_gpu: self.net.cuda() def detect(self, images) -> List[List[TrackingRegion]]: frames = [] for img in images: img = np.float32(img) im_height, im_width, _ = img.shape scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) if self.use_gpu: img = img.cuda() scale = scale.cuda() out = self.net(img) face_regions = self.nms_process(out, scale, im_height, im_width) frames.append(face_regions) return frames def nms_process(self, network_output, scale, im_height, im_width) -> List[TrackingRegion]: priorbox = PriorBox(cfg, network_output[2], (im_height, im_width), phase='test') priors = priorbox.forward() if self.use_gpu: priors = priors.cuda() loc, conf, _ = network_output prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale boxes = boxes.cpu().numpy() scores = conf.data.cpu().numpy()[:, 1] # ignore low scores inds = np.where(scores > self.score_min)[0] boxes = boxes[inds] scores = scores[inds] # keep top-K before NMS, top_k = 5 order = scores.argsort()[::-1][:5000] boxes = boxes[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = nms(dets, 0.3, force_cpu=False) dets = dets[keep, :] # keep top-K faster NMS dets = dets[:750, :] regions = [] for i in range(dets.shape[0]): face_region = TrackingRegion() face_region.set_rect(left=dets[i, 0], top=dets[i, 1], right=dets[i, 2], bottom=dets[i, 3]) face_region.confidence = dets[i, 4] face_region.data["class_id"] = "face" regions.append(face_region) return regions def check_keys(self, model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys self.logger.field('Missing keys', len(missing_keys)) self.logger.field('Unused checkpoint keys', len(unused_pretrained_keys)) self.logger.field('Used keys', len(used_pretrained_keys)) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True @staticmethod def remove_prefix(state_dict, prefix): """ Old style model is stored with all names of parameters sharing common prefix 'module.' """ print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()}