Example #1
0
if opt.backbone == 'ResNet50':
    model = PCB(opt)
elif opt.backbone == 'EfficientNet-B0':
    model = PCB_Effi(opt)

if opt.LSTM:
    # model_name = 'PCB-128_dim_cls'
    # model = load_network(model, model_name)
    model = PCB_Effi_LSTM(model, opt)
    # model_name = 'LSTM'
    # model = load_network(model, model_name)

if opt.GGNN:
    # model_name = 'PCB-128_dim_cls'
    # model = load_network(model, model_name)
    model = PCB_Effi_GGNN(model, opt)
    # model_name = 'LSTM'
    # model = load_network(model, model_name)

print(model)

if opt.single_cls:
    if opt.backbone == 'ResNet50':
        ignored_params = list(map(id, model.model.fc.parameters()))
    elif opt.backbone == 'EfficientNet-B0':
        ignored_params = list(map(id, model.model._fc.parameters()))
    ignored_params += (list(map(id, model.classifier.parameters())))
    if opt.freeze_backbone:
        ignored_params += (list(map(id, model.model.parameters())))
    base_params = filter(
        lambda p: id(p) not in ignored_params, model.parameters()
Example #2
0
if opt.backbone == 'ResNet50':
    model = PCB(opt)
elif opt.backbone == 'EfficientNet-B0':
    model = PCB_Effi(opt)

if opt.LSTM:
    model_name = 'test-pcb-ac'
    model = load_network(model, model_name)
    model = PCB_Effi_LSTM(model)
    # model_name = 'LSTM'
    # model = load_network(model, model_name)

if opt.GGNN:
    model_name = 'test-pcb-ac'
    model = load_network(model, model_name)
    model = PCB_Effi_GGNN(model)
    # model_name = 'GGNN'
    # model = load_network(model, model_name)

print(model)

if opt.single_cls:
    if opt.backbone == 'ResNet50':
        ignored_params = list(map(id, model.model.fc.parameters()))
    elif opt.backbone == 'EfficientNet-B0':
        ignored_params = list(map(id, model.model._fc.parameters()))
    ignored_params += (list(map(id, model.classifier.parameters())))
    if opt.freeze_backbone:
        ignored_params += (list(map(id, model.model.parameters())))
    base_params = filter(lambda p: id(p) not in ignored_params,
                         model.parameters())
Example #3
0
opt.nclasses = len(class_names)

if opt.PCB:
    model = PCB_Effi(opt.nclasses)

if opt.LSTM:
    # model_name = 'PCB-128_dim_cls'
    # model = load_network(model, model_name)
    model = PCB_Effi_LSTM(model, opt.train_backbone)
    # model_name = 'LSTM'
    # model = load_network(model, model_name)

if opt.GGNN:
    model_name = 'PCB-128_dim_cls'
    model = load_network(model, model_name)
    model = PCB_Effi_GGNN(model, opt.train_backbone)
    # model_name = 'LSTM'
    # model = load_network(model, model_name)

print(model)

if not opt.multi_loss:
    ignored_params = list(map(id, model.model._fc.parameters()))
    ignored_params += (list(map(id, model.classifier.parameters())))
    if not opt.train_backbone:
        ignored_params += (list(map(id, model.model.parameters())))
    base_params = filter(lambda p: id(p) not in ignored_params,
                         model.parameters())
    optimizer = optim.SGD([{
        'params': base_params,
        'lr': 0.1 * opt.lr
Example #4
0
opt.nclasses = len(class_names)

if opt.use_dense:
    model = ft_net_dense(opt.nclasses, opt.droprate)
elif opt.use_NAS:
    model = ft_net_NAS(opt.nclasses, opt.droprate)
else:
    model = ft_net(opt.nclasses, opt.droprate, opt.stride)

if opt.PCB:
    model = PCB_Effi(opt.nclasses)

if opt.PCB and (opt.LSTM or opt.GGNN):
    model_name = 'PCB-128_dim_cls'
    model = load_network(model, model_name)
    model = PCB_Effi_LSTM(model) if opt.LSTM else PCB_Effi_GGNN(model)
    # model_name = 'LSTM' or 'GGNN'
    # model = load_network(model, model_name)

print(model)

if not opt.multi_loss:
    ignored_params = list(map(id, model.model._fc.parameters()))
    ignored_params += (list(map(id, model.classifier.parameters())) +
                       list(map(id, model.model.parameters())))
    base_params = filter(lambda p: id(p) not in ignored_params,
                         model.parameters())
    optimizer_ft = optim.SGD([{
        'params': base_params,
        'lr': 0.1 * opt.lr
    }, {
Example #5
0
# Load Collected data Trained model
# --------
#

print('-------test-----------')

if opt.backbone == 'ResNet50':
    model_structure = PCB(opt)
elif opt.backbone == 'EfficientNet-B0':
    model_structure = PCB_Effi(opt)

if opt.LSTM:
    model_structure = PCB_Effi_LSTM(model_structure)

if opt.GGNN:
    model_structure = PCB_Effi_GGNN(model_structure)

model = load_network(model_structure)

# Remove the final fc layer and classifier layer
if not opt.LSTM and not opt.GGNN:
    if opt.backbone == 'ResNet50':
        model = PCB_test(model)
    elif opt.backbone == 'EfficientNet-B0':
        model = PCB_Effi_test(model)
elif opt.LSTM:
    model = PCB_Effi_LSTM_test(model)
elif opt.GGNN:
    model = PCB_Effi_GGNN_test(model)
else:
    model.classifier.classifier = nn.Sequential()