Example #1
0
 def crossover(self, individual_1, individual_2):
     # since the chromosomes are permutation
     # we keep multiplying two permutation in order to get
     # 2 children somehow related to the parents
     if self.__probability_of_crossover < random():
         return None, None
     assert individual_1.length() == individual_2.length()
     length = individual_1.length()
     ind_1_chromosome_list = individual_1.get_chromosome_list()
     ind_2_chromosome_list = individual_2.get_chromosome_list()
     child_1, child_2 = [], []
     for i in range(length):
         index_1, index_2 = randint(0, length - i - 1), randint(
             0, length - i - 1)
         chrom_1, chrom_2 = ind_1_chromosome_list[
             index_1], ind_2_chromosome_list[index_2]
         ind_1_chromosome_list.pop(index_1)
         ind_2_chromosome_list.pop(index_2)
         new_chrom_1 = sample(self.multiply_permutations(chrom_1, chrom_2),
                              len(chrom_1))
         new_chrom_2 = sample(self.multiply_permutations(chrom_2, chrom_1),
                              len(chrom_2))
         if randint(0, 1):
             child_1.append(new_chrom_1)
             child_2.append(new_chrom_2)
         else:
             child_1.append(new_chrom_2)
             child_2.append(new_chrom_1)
     return Individual(child_1), Individual(child_2)
def one_point_crossover(parent1, parent2):
    child = Individual(None)
    point = randint(0, len(parent2.knapsack) - 1)
    startSet = parent1.knapsack[:point]
    endSet = parent2.knapsack[point:]
    child.knapsack = np.concatenate([startSet, endSet])
    return child
Example #3
0
 def hillClimb(self, individualSize, maximumIterations):
     urAverageGuy = Individual(individualSize)
     theBestYouCanGet = urAverageGuy
     while maximumIterations > 0:
         neighborhood = urAverageGuy.neighbors()
         for maybeBetterGuy in neighborhood:
             if maybeBetterGuy.fitness() < urAverageGuy.fitness():
                 urAverageGuy = maybeBetterGuy
         if theBestYouCanGet == urAverageGuy or theBestYouCanGet.fitness(
         ) == 0:
             return theBestYouCanGet
         theBestYouCanGet = urAverageGuy
         maximumIterations -= 1
     return theBestYouCanGet
Example #4
0
 def __generate_an_individual(self):
     # generate a matrix of
     return Individual([
         sample(range(1, self.__individual_size + 1),
                self.__individual_size)
         for _ in range(self.__no_chromosomes)
     ])
def fixture():
    adresse = AddressBuilder().build()
    fn = "Douakha"
    ln = "salah"
    tel = "0606060606"
    mail = "*****@*****.**"

    indiv1 = IndividualClient(fn, ln, adresse, mail, tel)

    addr = AddressBuilder().build()
    name = "McDonalds"
    s = "12345678945612"

    c = Individual('Douakha', 'Sami', addr)
    pro = ProfessionalClient(s, name, addr, c)

    adresse = AddressBuilder().build()
    fn = "Chovin"
    ln = "antoine"
    tel = "0606060606"
    mail = "*****@*****.**"

    indiv2 = IndividualClient(fn, ln, adresse, mail, tel)

    return [indiv1, pro, indiv2]
    def run(n):
        current_node = Individual(n)

        while current_node.fitness() > 0:
            neighbours = current_node.get_neighbours()
            neighbours.sort(key=lambda b: b.fitness())
            best_neighbour = neighbours[0]

            if best_neighbour.fitness() < current_node.fitness():
                current_node = copy.deepcopy(best_neighbour)
            else:
                return current_node, current_node.fitness()

        return current_node, current_node.fitness()
Example #7
0
 def AdamAndEvas(self, fitnessTarget, individualSize):
     Adam = Individual(individualSize)
     bestSoFar = math.inf
     while bestSoFar > fitnessTarget:
         Evas = [Individual(individualSize) for i in range(20)]
         for Eva in Evas:
             children = Adam + Eva
             if children[0].fitness() < Adam.fitness():
                 Adam = deepcopy(children[0])
             elif children[1].fitness() < Adam.fitness():
                 Adam = deepcopy(children[1])
         if Adam.fitness() <= fitnessTarget:
             return Adam
    def run(self):
        current_node = Individual(self.__n)

        while current_node.fitness() > 0:
            neighbours = current_node.get_neighbours()
            neighbours.sort(key=lambda b: b.fitness())
            best_neighbour = neighbours[0]

            if best_neighbour.fitness() < current_node.fitness():
                current_node = copy.deepcopy(best_neighbour)
            else:
                self.signal.emit(
                    [current_node,
                     current_node.fitness(), 'done'])
                return

        self.signal.emit([current_node, current_node.fitness(), 'done'])
 def __init__(self, fname, lname, address, email=None, phone=None):
     Client.__init__(self)
     Individual.__init__(self, fname, lname, address, email, phone)
Example #10
0
from models.client import Client
from models.individual import Individual
from models.address_builder import AddressBuilder


class IndividualClient(Client, Individual):

    def __init__(self, fname, lname, address, email=None, phone=None):
        Client.__init__(self)
        Individual.__init__(self, fname, lname, address, email, phone)


if __name__ == "__main__":
    adresse = AddressBuilder().build()
    fn = "Douakha"
    ln = "salah"
    tel = "0606060606"
    mail = "*****@*****.**"
    contact = Individual(fn, ln, adresse)

    mcdonald = IndividualClient(fn, ln, adresse, mail, tel)
    print(mcdonald)
Example #11
0
 def __init__(self, population_size, number_of_elements=None):
     if (population_size is not None and number_of_elements is not None):
         self.individuals = np.empty(population_size, dtype=object)
         for i in range(population_size):
             self.individuals[i] = Individual(number_of_elements)
Example #12
0
from models.address import Address
from core.model import Model
from models.individual import Individual


class Company(Model):

    def __init__(self, siret, name, address, contact=None):
        super().__init__()
        self.address = address
        self.name = name
        self.siret = siret
        self.contact = contact




if __name__ == "__main__":
    a = Address("34", "avenue de la bajatiere", "38100", "Grenoble")
    c = Individual('Douakha', 'Sami', a)
    company = Company("145 678 901 21235", "Noobz", a, c)
    print(company.id_company)
 def __init__(self, size, individualSize):
     self._size = size
     self._indiviualSize = individualSize
     self._population = [Individual(individualSize) for i in range(size)]
     self._bestIndividual = self.bestIndividual()
Example #14
0
 def generate_population(self):
     initial_pop = []
     for i in range(self.__population_size):
         individual = Individual(self.__n)
         initial_pop.append(individual)
     return initial_pop[:]
Example #15
0
        for i in xrange(len(self.trafficLightIdList)):
            #traverse all the traffic lights
            tlsLogicList = traci.trafficlights.getCompleteRedYellowGreenDefinition(self.trafficLightIdList[i])
            #One traffic light has only one phase list now
            tlsLogicList = tlsLogicList[0]
            #each traffic light has several phases
            phaseList = []
            #traverse all the phase
            for j in xrange(len(tlsLogicList._phases)):
#                 print self.individual.genes[i].times[j]
                phaseList.append(traci.trafficlights.Phase(self.individual.genes[i].times[j], self.individual.genes[i].times[j], self.individual.genes[i].times[j], tlsLogicList._phases[j]._phaseDef))
            tlsLogicList._phases = phaseList
            traci.trafficlights.setCompleteRedYellowGreenDefinition(self.trafficLightIdList[i], tlsLogicList)
        #close connection
        
#         oriLogic =  traci.trafficlights.getCompleteRedYellowGreenDefinition(self.trafficLightIdList[0])
#         print(oriLogic[0]._phases[1]._duration)
        #inductionLoopIdList = traci.inductionloop.getIDList()
        #print(inductionLoopIdList)
        for _ in xrange(300):
            #print traci.simulation.getCurrentTime()
            traci.simulationStep()
            #print traci.inductionloop.getLastStepMeanSpeed('e1det_left0to0/0_1')
            #print traci.inductionloop.getLastStepVehicleNumber('e1det_left0to0/0_1')
            print traci.inductionloop.getLastStepMeanSpeed('e1det_left1to0/1_0')
        traci.close()   
        

if __name__ == "__main__":
    instance = SUMOOnline(8813, Individual.random(16)) 
    instance.beginEvaluate()