# vae.perform_training(epochs=20, checkpoint_freq=100) vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAML_VAE(vae=vae, latent_algorithm='p1', database=mini_imagenet_database, network_cls=MiniImagenetModel, n=5, k_ml=1, k_val_ml=5, k_val=1, k_val_val=15, k_test=1, k_val_test=15, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.05, num_steps_validation=5, save_after_iterations=1000, meta_learning_rate=0.001, report_validation_frequency=200, log_train_images_after_iteration=200, num_tasks_val=100, clip_gradients=True, experiment_name='mini_imagenet_crop_random_uniform', val_seed=42, val_test_batch_norm_momentum=0.0) maml_vae.visualize_meta_learning_task(shape, num_tasks_to_visualize=2) maml_vae.train(iterations=8000)
vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAML_VAE( vae=vae, database=voxceleb_database, network_cls=SimpleModel, n=5, k=1, k_val_ml=5, k_val_val=15, k_val_test=15, k_test=5, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.4, num_steps_validation=5, save_after_iterations=1000, meta_learning_rate=0.001, report_validation_frequency=200, log_train_images_after_iteration=200, number_of_tasks_val=100, number_of_tasks_test=1000, clip_gradients=False, experiment_name='voxceleb_std_1.0', val_seed=42, val_test_batch_norm_momentum=0.0 ) maml_vae.visualize_meta_learning_task(shape, num_tasks_to_visualize=2)
vae.perform_training(epochs=500, checkpoint_freq=100) vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAML_VAE(vae=vae, database=omniglot_database, latent_algorithm='p1', network_cls=SimpleModel, n=20, k_ml=1, k_val_ml=1, k_val=1, k_val_val=1, k_test=1, k_val_test=1, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.4, num_steps_validation=5, save_after_iterations=1000, meta_learning_rate=0.001, report_validation_frequency=200, log_train_images_after_iteration=200, num_tasks_val=100, clip_gradients=False, experiment_name='omniglot_vae_0.5_shift', val_seed=42, val_test_batch_norm_momentum=0.0) # maml_vae.visualize_meta_learning_task(shape, num_tasks_to_visualize=2) maml_vae.train(iterations=1000)