Example #1
0
    def __init__(self, bert, opt):
        super(AEN_BERT, self).__init__()
        self.opt = opt
        self.bert = bert
        self.squeeze_embedding = SqueezeEmbedding()
        self.dropout = nn.Dropout(opt.dropout)

        self.attn_k = Attention(opt.bert_dim,
                                out_dim=opt.hidden_dim,
                                n_head=8,
                                score_function='mlp',
                                dropout=opt.dropout)
        self.attn_q = Attention(opt.bert_dim,
                                out_dim=opt.hidden_dim,
                                n_head=8,
                                score_function='mlp',
                                dropout=opt.dropout)
        self.ffn_c = PositionwiseFeedForward(opt.hidden_dim,
                                             dropout=opt.dropout)
        self.ffn_t = PositionwiseFeedForward(opt.hidden_dim,
                                             dropout=opt.dropout)

        self.attn_s1 = Attention(opt.hidden_dim,
                                 n_head=8,
                                 score_function='mlp',
                                 dropout=opt.dropout)

        self.dense = nn.Linear(opt.hidden_dim * 3, opt.polarities_dim)
Example #2
0
    def __init__(self, embedding_matrix, opt):
        super(AEN_GloVe, self).__init__()
        self.opt = opt
        self.embed = nn.Embedding.from_pretrained(
            torch.tensor(embedding_matrix, dtype=torch.float))
        self.squeeze_embedding = SqueezeEmbedding()

        self.attn_k = Attention(opt.embed_dim,
                                out_dim=opt.hidden_dim,
                                n_head=8,
                                score_function='mlp',
                                dropout=opt.dropout)
        self.attn_q = Attention(opt.embed_dim,
                                out_dim=opt.hidden_dim,
                                n_head=8,
                                score_function='mlp',
                                dropout=opt.dropout)
        self.ffn_c = PositionwiseFeedForward(opt.hidden_dim,
                                             dropout=opt.dropout)
        self.ffn_t = PositionwiseFeedForward(opt.hidden_dim,
                                             dropout=opt.dropout)

        self.attn_s1 = Attention(opt.hidden_dim,
                                 n_head=8,
                                 score_function='mlp',
                                 dropout=opt.dropout)

        self.dense = nn.Linear(opt.hidden_dim * 3, opt.polarities_dim)
Example #3
0
 def __init__(self, embedding_matrix, opt):
     super(IAN, self).__init__()
     self.opt = opt
     self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
     self.lstm_context = DynamicLSTM(opt.embed_dim, opt.hidden_dim, num_layers=1, batch_first=True)
     self.lstm_aspect = DynamicLSTM(opt.embed_dim, opt.hidden_dim, num_layers=1, batch_first=True)
     self.attention_aspect = Attention(opt.hidden_dim, score_function='bi_linear')
     self.attention_context = Attention(opt.hidden_dim, score_function='bi_linear')
     self.dense = nn.Linear(opt.hidden_dim*2, opt.polarities_dim)
Example #4
0
    def __init__(self,
                 args,
                 word_embeddings: TextFieldEmbedder,
                 vocab: Vocabulary,
                 domain_info: bool = True) -> None:
        super().__init__(vocab)

        # parameters
        self.args = args
        self.word_embeddings = word_embeddings
        self.domain = domain_info

        # layers
        self.event_embedding = EventEmbedding(args, self.word_embeddings)
        self.event_type_embedding = EventTypeEmbedding(args,
                                                       self.word_embeddings)
        self.lstm = LSTM(input_size=self.args.embedding_size,
                         hidden_size=self.args.hidden_size)
        self.W_c = Linear(self.args.embedding_size,
                          self.args.hidden_size,
                          bias=False)
        self.W_e = Linear(self.args.hidden_size,
                          self.args.hidden_size,
                          bias=False)
        self.relu = ReLU()
        self.linear = Linear(self.args.hidden_size, self.args.embedding_size)
        self.attention = Attention(self.args.hidden_size, score_function='mlp')
        self.score = Score(self.args.embedding_size,
                           self.args.embedding_size,
                           threshold=self.args.threshold)

        # metrics
        self.accuracy = BooleanAccuracy()
        self.f1_score = F1Measure(positive_label=1)
        self.loss_function = BCELoss()
Example #5
0
    def __init__(self, args, word_embeddings: TextFieldEmbedder,
                 vocab: Vocabulary) -> None:
        super().__init__(vocab)

        # parameters
        self.args = args
        self.word_embeddings = word_embeddings

        # gate
        self.W_z = nn.Linear(self.args.embedding_size, 1, bias=False)
        self.U_z = nn.Linear(self.args.embedding_size, 1, bias=False)
        self.W_r = nn.Linear(self.args.embedding_size, 1, bias=False)
        self.U_r = nn.Linear(self.args.embedding_size, 1, bias=False)
        self.W = nn.Linear(self.args.embedding_size, 1, bias=False)
        self.U = nn.Linear(self.args.embedding_size, 1, bias=False)

        # layers
        self.event_embedding = EventEmbedding(args, self.word_embeddings)
        self.attention = Attention(self.args.embedding_size,
                                   score_function='mlp')
        self.sigmoid = Sigmoid()
        self.tanh = Tanh()
        self.score = Score(self.args.embedding_size,
                           self.args.embedding_size,
                           threshold=self.args.threshold)

        # metrics
        self.accuracy = BooleanAccuracy()
        self.f1_score = F1Measure(positive_label=1)
        self.loss_function = BCELoss()
Example #6
0
 def __init__(self, embedding_matrix, opt):
     super(MemNet, self).__init__()
     self.opt = opt
     self.embed = nn.Embedding.from_pretrained(
         torch.tensor(embedding_matrix, dtype=torch.float))
     self.squeeze_embedding = SqueezeEmbedding(batch_first=True)
     self.attention = Attention(opt.embed_dim, score_function='mlp')
     self.x_linear = nn.Linear(opt.embed_dim, opt.embed_dim)
     self.dense = nn.Linear(opt.embed_dim, opt.polarities_dim)