Example #1
0
def main(argv):
    tf_device = '/gpu:0'
    with tf.device(tf_device):
        """Build graph
        """
        if FLAGS.color_channel == 'RGB':
            input_data = tf.placeholder(
                dtype=tf.float32,
                shape=[None, FLAGS.input_size, FLAGS.input_size, 3],
                name='input_image')
        else:
            input_data = tf.placeholder(
                dtype=tf.float32,
                shape=[None, FLAGS.input_size, FLAGS.input_size, 1],
                name='input_image')

        center_map = tf.placeholder(
            dtype=tf.float32,
            shape=[None, FLAGS.input_size, FLAGS.input_size, 1],
            name='center_map')

        # tensorflow slim model
        model = cpm_hand_slim_dw.CPM_Model(FLAGS.stages, FLAGS.joints + 1)
        model.build_model(input_data, center_map, 1)

        # keras model
        # model = cpm_hand_keras.CPM_Model(FLAGS.stages, FLAGS.joints + 1)
        # model.build_model(input_data, center_map, 1)

    saver = tf.train.Saver()
    """Create session and restore weights
    """
    sess = tf.Session()

    sess.run(tf.global_variables_initializer())
    if FLAGS.model_path.endswith('pkl'):
        model.load_weights_from_file(FLAGS.model_path, sess, False)
    else:
        saver.restore(sess, FLAGS.model_path)

    test_center_map = cpm_utils.gaussian_img(FLAGS.input_size,
                                             FLAGS.input_size,
                                             FLAGS.input_size / 2,
                                             FLAGS.input_size / 2,
                                             FLAGS.cmap_radius)
    test_center_map = np.reshape(test_center_map,
                                 [1, FLAGS.input_size, FLAGS.input_size, 1])

    # Check weights
    for variable in tf.trainable_variables():
        with tf.variable_scope('', reuse=True):
            var = tf.get_variable(variable.name.split(':0')[0])
            print(variable.name, np.mean(sess.run(var)))

    if not FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
        cam = cv2.VideoCapture(FLAGS.cam_num)

    # ------------------------------------------ save model-------------------------------
    # save_dir = 'checkpoints/'
    # if not os.path.exists(save_dir):
    #     os.makedirs(save_dir)
    # save_path = os.path.join(save_dir, 'best_validation')
    # saver.save(sess=sess, save_path=save_path)

    # builder = tf.saved_model.builder.SavedModelBuilder('./SavedModel/')
    # signature = predict_signature_def(inputs={'input_image:0': input_data,
    #                                           'center_map:0': center_map})
    # builder.add_meta_graph_and_variables(sess,
    #                                      [tf.saved_model.tag_constants.TRAINING],
    #                                      signature_def_map={'predict': signature},
    #                                      assets_collection=None,
    #                                      strip_default_attrs=True)
    # builder.add_meta_graph([tf.saved_model.tag_constants.SERVING], strip_default_attrs=True)
    # builder.save()
    signature = None

    # Create kalman filters
    if FLAGS.KALMAN_ON:
        kalman_filter_array = [
            cv2.KalmanFilter(4, 2) for _ in range(FLAGS.joints)
        ]
        for _, joint_kalman_filter in enumerate(kalman_filter_array):
            joint_kalman_filter.transitionMatrix = np.array(
                [[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]],
                np.float32)
            joint_kalman_filter.measurementMatrix = np.array(
                [[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
            joint_kalman_filter.processNoiseCov = np.array(
                [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
                np.float32) * FLAGS.kalman_noise
    else:
        kalman_filter_array = None

    with tf.device(tf_device):

        while True:
            t1 = time.time()
            if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
                test_img = cpm_utils.read_image(FLAGS.DEMO_TYPE, [],
                                                FLAGS.input_size, 'IMAGE')
            else:
                test_img = cpm_utils.read_image([], cam, FLAGS.input_size,
                                                'WEBCAM')

            test_img_resize = cv2.resize(test_img,
                                         (FLAGS.input_size, FLAGS.input_size))
            print(
                "----------------------------------------start to read img--------------------"
            )
            print('img read time %f' % (time.time() - t1))

            if FLAGS.color_channel == 'GRAY':
                test_img_resize = np.dot(test_img_resize[..., :3],
                                         [0.299, 0.587, 0.114]).reshape(
                                             (FLAGS.input_size,
                                              FLAGS.input_size, 1))
                cv2.imshow('color', test_img.astype(np.uint8))
                cv2.imshow('gray', test_img_resize.astype(np.uint8))
                cv2.waitKey(1)

            test_img_input = test_img_resize / 256.0 - 0.5
            test_img_input = np.expand_dims(test_img_input, axis=0)

            if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')):
                # Inference
                t1 = time.time()

                # print("=========================test image============================")
                # print(test_img_input)
                # print("=========================test image shape============================")
                # print(test_img_input.shape)

                # slim prediction
                predict_heatmap, stage_heatmap_np = sess.run(
                    [
                        model.current_heatmap,
                        model.stage_heatmap,
                    ],
                    feed_dict={
                        'input_image:0': test_img_input,
                        'center_map:0': test_center_map
                    })

                # keras prediction
                # predict_heatmap, stage_heatmap_np = model.predict(test_img_input)

                print("---------------stage_heatmap_np:------------------")
                # print(predict_heatmap)
                print(np.array(stage_heatmap_np).shape)
                # print(stage_heatmap_np)

                inputa = tf.saved_model.utils.build_tensor_info(input_data)
                predict_heatmap = tf.convert_to_tensor(predict_heatmap)
                outputa = tf.saved_model.utils.build_tensor_info(
                    predict_heatmap)
                # signatureA = (
                #     tf.saved_model.signature_def_utils.build_signature_def(
                #         inputs={"aaa": inputA},
                #         outputs={"bbb": outputA},
                #         method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME)
                # )

                # print('input:')
                # print(input_data)
                # print('output:')
                # print(predict_heatmap)
                # signature = predict_signature_def(inputs={'input_image:0': input_data}
                #                                    ,
                #                                    outputs={'Const:0': predict_heatmap})
                #
                # print("signature content:")
                # print(signature)

                # Show visualized image
                demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np,
                                            kalman_filter_array)
                cv2.imshow('demo_img', demo_img.astype(np.uint8))
                # break
                if cv2.waitKey(0) == ord('q'): break
                print('fps: %.2f' % (1 / (time.time() - t1)))

            elif FLAGS.DEMO_TYPE == 'MULTI':

                # Inference
                t1 = time.time()
                predict_heatmap, stage_heatmap_np = sess.run(
                    [
                        model.current_heatmap,
                        model.stage_heatmap,
                    ],
                    feed_dict={
                        'input_image:0': test_img_input,
                        'center_map:0': test_center_map
                    })

                # Show visualized image
                demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np,
                                            kalman_filter_array)
                cv2.imshow('demo_img', demo_img.astype(np.uint8))
                if cv2.waitKey(1) == ord('q'): break
                print('fps: %.2f' % (1 / (time.time() - t1)))

            elif FLAGS.DEMO_TYPE == 'SINGLE':

                # Inference
                t1 = time.time()
                stage_heatmap_np = sess.run(
                    [model.stage_heatmap[5]],
                    feed_dict={
                        'input_image:0': test_img_input,
                        'center_map:0': test_center_map
                    })

                # Show visualized image
                demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np,
                                            kalman_filter_array)
                cv2.imshow('current heatmap', (demo_img).astype(np.uint8))
                if cv2.waitKey(1) == ord('q'): break
                print('fps: %.2f' % (1 / (time.time() - t1)))

            elif FLAGS.DEMO_TYPE == 'HM':

                # Inference
                t1 = time.time()
                stage_heatmap_np = sess.run(
                    [model.stage_heatmap[FLAGS.stages - 1]],
                    feed_dict={
                        'input_image:0': test_img_input,
                        'center_map:0': test_center_map
                    })
                print('fps: %.2f' % (1 / (time.time() - t1)))

                demo_stage_heatmap = stage_heatmap_np[
                    len(stage_heatmap_np) - 1][0, :, :,
                                               0:FLAGS.joints].reshape(
                                                   (FLAGS.hmap_size,
                                                    FLAGS.hmap_size,
                                                    FLAGS.joints))
                demo_stage_heatmap = cv2.resize(
                    demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size))

                vertical_imgs = []
                tmp_img = None
                joint_coord_set = np.zeros((FLAGS.joints, 2))

                for joint_num in range(FLAGS.joints):
                    # Concat until 4 img
                    if (joint_num % 4) == 0 and joint_num != 0:
                        vertical_imgs.append(tmp_img)
                        tmp_img = None

                    demo_stage_heatmap[:, :, joint_num] *= (
                        255 / np.max(demo_stage_heatmap[:, :, joint_num]))

                    # Plot color joints
                    if np.min(demo_stage_heatmap[:, :, joint_num]) > -50:
                        joint_coord = np.unravel_index(
                            np.argmax(demo_stage_heatmap[:, :, joint_num]),
                            (FLAGS.input_size, FLAGS.input_size))
                        joint_coord_set[joint_num, :] = joint_coord
                        color_code_num = (joint_num // 4)

                        if joint_num in [0, 4, 8, 12, 16]:
                            if PYTHON_VERSION == 3:
                                joint_color = list(
                                    map(lambda x: x + 35 * (joint_num % 4),
                                        joint_color_code[color_code_num]))
                            else:
                                joint_color = map(
                                    lambda x: x + 35 * (joint_num % 4),
                                    joint_color_code[color_code_num])

                            cv2.circle(test_img,
                                       center=(joint_coord[1], joint_coord[0]),
                                       radius=3,
                                       color=joint_color,
                                       thickness=-1)
                        else:
                            if PYTHON_VERSION == 3:
                                joint_color = list(
                                    map(lambda x: x + 35 * (joint_num % 4),
                                        joint_color_code[color_code_num]))
                            else:
                                joint_color = map(
                                    lambda x: x + 35 * (joint_num % 4),
                                    joint_color_code[color_code_num])

                            cv2.circle(test_img,
                                       center=(joint_coord[1], joint_coord[0]),
                                       radius=3,
                                       color=joint_color,
                                       thickness=-1)

                    # Put text
                    tmp = demo_stage_heatmap[:, :, joint_num].astype(np.uint8)
                    tmp = cv2.putText(
                        tmp,
                        'Min:' +
                        str(np.min(demo_stage_heatmap[:, :, joint_num])),
                        org=(5, 20),
                        fontFace=cv2.FONT_HERSHEY_COMPLEX,
                        fontScale=0.3,
                        color=150)
                    tmp = cv2.putText(
                        tmp,
                        'Mean:' +
                        str(np.mean(demo_stage_heatmap[:, :, joint_num])),
                        org=(5, 30),
                        fontFace=cv2.FONT_HERSHEY_COMPLEX,
                        fontScale=0.3,
                        color=150)
                    tmp_img = np.concatenate((tmp_img, tmp), axis=0) \
                        if tmp_img is not None else tmp

                # Plot limbs
                for limb_num in range(len(limbs)):
                    if np.min(
                            demo_stage_heatmap[:, :, limbs[limb_num][0]]
                    ) > -2000 and np.min(
                            demo_stage_heatmap[:, :,
                                               limbs[limb_num][1]]) > -2000:
                        x1 = joint_coord_set[limbs[limb_num][0], 0]
                        y1 = joint_coord_set[limbs[limb_num][0], 1]
                        x2 = joint_coord_set[limbs[limb_num][1], 0]
                        y2 = joint_coord_set[limbs[limb_num][1], 1]
                        length = ((x1 - x2)**2 + (y1 - y2)**2)**0.5
                        if length < 10000 and length > 5:
                            deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
                            polygon = cv2.ellipse2Poly((int(
                                (y1 + y2) / 2), int((x1 + x2) / 2)),
                                                       (int(length / 2), 3),
                                                       int(deg), 0, 360, 1)
                            color_code_num = limb_num // 4
                            if PYTHON_VERSION == 3:
                                limb_color = list(
                                    map(lambda x: x + 35 * (limb_num % 4),
                                        joint_color_code[color_code_num]))
                            else:
                                limb_color = map(
                                    lambda x: x + 35 * (limb_num % 4),
                                    joint_color_code[color_code_num])

                            cv2.fillConvexPoly(test_img,
                                               polygon,
                                               color=limb_color)

                if tmp_img is not None:
                    tmp_img = np.lib.pad(
                        tmp_img,
                        ((0, vertical_imgs[0].shape[0] - tmp_img.shape[0]),
                         (0, 0)),
                        'constant',
                        constant_values=(0, 0))
                    vertical_imgs.append(tmp_img)

                # Concat horizontally
                output_img = None
                for col in range(len(vertical_imgs)):
                    output_img = np.concatenate((output_img, vertical_imgs[col]), axis=1) if output_img is not None else \
                        vertical_imgs[col]

                output_img = output_img.astype(np.uint8)
                output_img = cv2.applyColorMap(output_img, cv2.COLORMAP_JET)
                test_img = cv2.resize(test_img, (300, 300), cv2.INTER_LANCZOS4)
                cv2.imshow('hm', output_img)
                cv2.moveWindow('hm', 2000, 200)
                cv2.imshow('rgb', test_img)
                cv2.moveWindow('rgb', 2000, 750)
                if cv2.waitKey(1) == ord('q'): break
Example #2
0
def main(argv):
    """Build graph
    """
    batch_x, batch_c, batch_y, batch_x_orig = tf_utils.read_batch_cpm(FLAGS.tfr_data_files, FLAGS.input_size,
                                                                      FLAGS.heatmap_size, FLAGS.num_of_joints,
                                                                      FLAGS.center_radius, FLAGS.batch_size)
    if FLAGS.color_channel == 'RGB':
        input_placeholder = tf.placeholder(dtype=tf.float32,
                                           shape=(FLAGS.batch_size, FLAGS.input_size, FLAGS.input_size, 3),
                                           name='input_placeholer')
    elif FLAGS.color_channel == 'GRAY':
        input_placeholder = tf.placeholder(dtype=tf.float32,
                                           shape=(FLAGS.batch_size, FLAGS.input_size, FLAGS.input_size, 1),
                                           name='input_placeholer')
    cmap_placeholder = tf.placeholder(dtype=tf.float32, shape=(FLAGS.batch_size, FLAGS.input_size, FLAGS.input_size, 1),
                                      name='cmap_placeholder')
    hmap_placeholder = tf.placeholder(dtype=tf.float32,
                                      shape=(FLAGS.batch_size,
                                             FLAGS.heatmap_size,
                                             FLAGS.heatmap_size,
                                             FLAGS.num_of_joints + 1),
                                      name='hmap_placeholder')

    # model = cpm_body_slim.CPM_Model(FLAGS.stages, FLAGS.num_of_joints + 1)
    model = cpm_hand_slim_dw.CPM_Model(FLAGS.stages, FLAGS.num_of_joints + 1)
    model.build_model(input_placeholder, cmap_placeholder, FLAGS.batch_size)
    model.build_loss(hmap_placeholder, FLAGS.lr, FLAGS.lr_decay_rate, FLAGS.lr_decay_step)
    print('=====Model Build=====\n')

    """Training
    """
    with tf.Session() as sess:

        # Create dataset queue
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        ## Create summary
        tf_writer = tf.summary.FileWriter(FLAGS.log_dir_2, sess.graph, filename_suffix=FLAGS.log_file_name)

        ## Create model saver
        saver = tf.train.Saver(max_to_keep=None)

        # Init
        init = tf.global_variables_initializer()
        sess.run(init)

        # Restore weights
        if FLAGS.pretrained_model is not None:
            if FLAGS.pretrained_model.endswith('.pkl'):
                model.load_weights_from_file(FLAGS.pretrained_model, sess, finetune=True)

                # Check weights
                for variable in tf.trainable_variables():
                    with tf.variable_scope('', reuse=True):
                        var = tf.get_variable(variable.name.split(':0')[0])
                        print(variable.name, np.mean(sess.run(var)))

            else:
                saver.restore(sess, FLAGS.pretrained_model)

                # check weights
                for variable in tf.trainable_variables():
                    with tf.variable_scope('', reuse=True):
                        var = tf.get_variable(variable.name.split(':0')[0])
                        print(variable.name, np.mean(sess.run(var)))

        # tf_device = '/gpu:0'
        # with tf.device(tf_device):

        while True:

            # Read in batch data
            batch_x_np, batch_y_np, batch_c_np = sess.run([batch_x,
                                                           batch_y,
                                                           batch_c])

            # Warp training images
            for img_num in range(batch_x_np.shape[0]):
                deg1 = (2 * np.random.rand() - 1) * 50
                deg2 = (2 * np.random.rand() - 1) * 50
                batch_x_np[img_num, ...] = cpm_utils.warpImage(batch_x_np[img_num, ...],
                                                               0, deg1, deg2, 1, 30)
                batch_y_np[img_num, ...] = cpm_utils.warpImage(batch_y_np[img_num, ...],
                                                               0, deg1, deg2, 1, 30)
                batch_y_np[img_num, :, :, FLAGS.num_of_joints] = np.ones(shape=(FLAGS.input_size, FLAGS.input_size)) - \
                                                                 np.max(
                                                                     batch_y_np[img_num, :, :, 0:FLAGS.num_of_joints],
                                                                     axis=2)
                batch_c_np[img_num, ...] = cpm_utils.warpImage(batch_c_np[img_num, ...],
                                                               0, deg1, deg2, 1, 30).reshape(
                    (FLAGS.input_size, FLAGS.input_size, 1))

            # Convert image to grayscale
            if FLAGS.color_channel == 'GRAY':
                batch_x_gray_np = np.zeros((batch_x_np.shape[0], FLAGS.input_size, FLAGS.input_size, 1))
                for img_num in range(batch_x_np.shape[0]):
                    tmp = batch_x_np[img_num, ...]
                    tmp += 0.5
                    tmp *= 255
                    tmp = np.dot(tmp[..., :3], [0.114, 0.587, 0.299])
                    tmp /= 255
                    tmp -= 0.5
                    batch_x_gray_np[img_num, ...] = tmp.reshape((FLAGS.input_size, FLAGS.input_size, 1))
                batch_x_np = batch_x_gray_np

            # Recreate heatmaps
            gt_heatmap_np = cpm_utils.make_gaussian_batch(batch_y_np, FLAGS.heatmap_size, 3)

            # Update once
            stage_losses_np, total_loss_np, _, summary, current_lr, \
            stage_heatmap_np, global_step = sess.run([model.stage_loss,
                                                      model.total_loss,
                                                      model.train_op,
                                                      model.merged_summary,
                                                      model.lr,
                                                      model.stage_heatmap,
                                                      model.global_step
                                                      ],
                                                     feed_dict={input_placeholder: batch_x_np,
                                                                cmap_placeholder: batch_c_np,
                                                                hmap_placeholder: gt_heatmap_np})

            # Write logs
            tf_writer.add_summary(summary, global_step)

            # Draw intermediate results
            if global_step % 50 == 0:

                if FLAGS.color_channel == 'GRAY':
                    demo_img = np.repeat(batch_x_np[0], 3, axis=2)
                    demo_img += 0.5
                elif FLAGS.color_channel == 'RGB':
                    demo_img = batch_x_np[0] + 0.5
                demo_stage_heatmaps = []
                for stage in range(FLAGS.stages):
                    demo_stage_heatmap = stage_heatmap_np[stage][0, :, :, 0:FLAGS.num_of_joints].reshape(
                        (FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
                    demo_stage_heatmap = cv2.resize(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size))
                    demo_stage_heatmap = np.amax(demo_stage_heatmap, axis=2)
                    demo_stage_heatmap = np.reshape(demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size, 1))
                    demo_stage_heatmap = np.repeat(demo_stage_heatmap, 3, axis=2)
                    demo_stage_heatmaps.append(demo_stage_heatmap)

                demo_gt_heatmap = gt_heatmap_np[0, :, :, 0:FLAGS.num_of_joints].reshape(
                    (FLAGS.heatmap_size, FLAGS.heatmap_size, FLAGS.num_of_joints))
                demo_gt_heatmap = cv2.resize(demo_gt_heatmap, (FLAGS.input_size, FLAGS.input_size))
                demo_gt_heatmap = np.amax(demo_gt_heatmap, axis=2)
                demo_gt_heatmap = np.reshape(demo_gt_heatmap, (FLAGS.input_size, FLAGS.input_size, 1))
                demo_gt_heatmap = np.repeat(demo_gt_heatmap, 3, axis=2)

                if FLAGS.stages > 4:
                    upper_img = np.concatenate((demo_stage_heatmaps[0], demo_stage_heatmaps[1], demo_stage_heatmaps[2]),
                                               axis=1)
                    blend_img = 0.5 * demo_gt_heatmap + 0.5 * demo_img
                    lower_img = np.concatenate((demo_stage_heatmaps[FLAGS.stages - 1], demo_gt_heatmap, blend_img),
                                               axis=1)
                    demo_img = np.concatenate((upper_img, lower_img), axis=0)
                    cv2.imshow('current heatmap', (demo_img * 255).astype(np.uint8))
                    cv2.waitKey(100)
                else:
                    upper_img = np.concatenate((demo_stage_heatmaps[FLAGS.stages - 1], demo_gt_heatmap, demo_img),
                                               axis=1)
                    cv2.imshow('current heatmap', (upper_img * 255).astype(np.uint8))
                    cv2.waitKey(1000)

            print('##========Iter {:>6d}========##'.format(global_step))
            print('Current learning rate: {:.8f}'.format(current_lr))
            for stage_num in range(FLAGS.stages):
                print('Stage {} loss: {:>.3f}'.format(stage_num + 1, stage_losses_np[stage_num]))
            print('Total loss: {:>.3f}\n\n'.format(total_loss_np))

            # Save models
            if global_step % 5000 == 1:
                save_path_str = 'models/' + FLAGS.saved_model_name
                saver.save(sess=sess, save_path=save_path_str, global_step=global_step)
                print('\nModel checkpoint saved...\n')

            # Finish training
            if global_step == FLAGS.training_iterations:
                break

        coord.request_stop()
        coord.join(threads)

    print('Training done.')