def _build_model_op(self):
        with tf.variable_scope('bidirectional_rnn'):
            if self.cfg.mode_type == 'stack':  # n-layers stacked bidirectional rnn
                rnns = StackBiRNN(self.cfg.num_layers,
                                  self.cfg.num_units,
                                  scope='stack_mode')
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output,
                                 keep_prob=self.keep_prob,
                                 is_train=self.is_train)

            elif self.cfg.mode_type == 'densely_connected':
                rnns = DenseConnectBiRNN(self.cfg.num_layers_dc,
                                         self.cfg.num_units_list)
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output,
                                 keep_prob=self.keep_prob,
                                 is_train=self.is_train)

            else:  # default single model
                rnns = BiRNN(self.cfg.num_units, scope='single_mode')
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output,
                                 keep_prob=self.keep_prob,
                                 is_train=self.is_train)

        self.logits = dense(output,
                            self.cfg.tag_vocab_size,
                            use_bias=True,
                            scope='project')
    def _build_embeddings_op(self):
        tf.summary.scalar('dropout_keep_probability', self.keep_prob)
        tf.summary.scalar("learning_rate", self.lr)
        with tf.variable_scope('words'):
            if self.cfg.use_pretrained:
                _word_embeddings = tf.Variable(self.cfg.glove_embeddings, name='_word_embeddings', dtype=tf.float32,
                                               trainable=self.cfg.finetune_emb)
            else:
                _word_embeddings = tf.get_variable(name='_word_embeddings', dtype=tf.float32, trainable=True,
                                                   shape=[self.cfg.word_vocab_size, self.cfg.word_dim])
            word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.word_ids, name="word_embeddings")

        with tf.variable_scope('char_rep_method'):
            if self.cfg.use_char_emb:
                _char_embeddings = tf.get_variable(name='_char_embeddings', dtype=tf.float32, trainable=True,
                                                   shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_embeddings = tf.nn.embedding_lookup(_char_embeddings, self.char_ids, name="char_embeddings")
                if self.cfg.char_rep_method == 'rnn':
                    char_rnn = BiRNN(self.cfg.num_units_char)
                    char_output = char_rnn(char_embeddings, self.word_lengths, return_last_state=True)
                else:  # cnn model for char representation
                    char_output = multi_conv1d(char_embeddings, self.cfg.filter_sizes, self.cfg.heights, "VALID",
                                               self.is_train, self.keep_prob)
                word_embeddings = tf.concat([word_embeddings, char_output], axis=-1)
        if self.cfg.use_highway:
            with tf.variable_scope("highway"):
                self.word_embeddings = highway_network(word_embeddings, self.cfg.highway_num_layers, bias=True,
                                                       is_train=self.is_train, keep_prob=self.keep_prob)
        else:  # directly dropout before model_op
            self.word_embeddings = dropout(word_embeddings, keep_prob=self.keep_prob, is_train=self.is_train)
        print("embeddings shape: {}".format(self.word_embeddings.get_shape().as_list()))
Example #3
0
    def _build_embeddings_op(self):
        tf.summary.scalar('dropout_keep_probability', self.keep_prob)
        tf.summary.scalar("learning_rate", self.lr)
        with tf.variable_scope('words'):
            if self.cfg.use_pretrained:
                _word_embeddings = tf.Variable(self.cfg.glove_embeddings,
                                               name='_word_embeddings',
                                               dtype=tf.float32,
                                               trainable=self.cfg.finetune_emb)
            else:
                _word_embeddings = tf.get_variable(
                    name='_word_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.word_vocab_size, self.cfg.word_dim])
            word_embeddings = tf.nn.embedding_lookup(_word_embeddings,
                                                     self.word_ids,
                                                     name="word_embeddings")

        with tf.variable_scope('char_represent'):
            if self.cfg.use_char_emb:
                _char_embeddings = tf.get_variable(
                    name='_char_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_embeddings = tf.nn.embedding_lookup(
                    _char_embeddings, self.char_ids, name="char_embeddings")
                s = tf.shape(
                    char_embeddings
                )  # [batch size, max length of sentence, max length of word, char_dim]
                output = multi_conv1d(char_embeddings,
                                      self.cfg.filter_sizes,
                                      self.cfg.heights,
                                      "VALID",
                                      self.is_train,
                                      self.keep_prob,
                                      scope="char_cnn")
                # shape = (batch size, max sentence length, char representation size)
                self.char_output = tf.reshape(
                    output, [s[0], s[1], self.cfg.char_out_size])
                word_embeddings = tf.concat(
                    [word_embeddings, self.char_output], axis=-1)

        if self.cfg.use_highway:
            with tf.variable_scope("highway"):
                self.word_embeddings = highway_network(
                    word_embeddings,
                    self.cfg.highway_num_layers,
                    bias=True,
                    is_train=self.is_train,
                    keep_prob=self.keep_prob)
        else:  # directly dropout before model_op
            self.word_embeddings = dropout(word_embeddings,
                                           keep_prob=self.keep_prob,
                                           is_train=self.is_train)
        print('word embeddings shape: {}'.format(
            self.word_embeddings.get_shape().as_list()))
    def _build_model_op(self):
        with tf.variable_scope('bidirectional_rnn'):
            if self.cfg.mode_type == 'stack':  # n-layers stacked bidirectional rnn
                rnns = StackBiRNN(self.cfg.num_layers, self.cfg.num_units, scope='stack_mode')
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output, keep_prob=self.keep_prob, is_train=self.is_train)

            elif self.cfg.mode_type == 'densely_connected':
                rnns = DenseConnectBiRNN(self.cfg.num_layers_dc, self.cfg.num_units_list)
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output, keep_prob=self.keep_prob, is_train=self.is_train)

            else:  # default single model
                rnns = BiRNN(self.cfg.num_units, scope='single_mode')
                output = rnns(self.word_embeddings, self.seq_lengths)
                output = dropout(output, keep_prob=self.keep_prob, is_train=self.is_train)
            print("rnn output shape: {}".format(output.get_shape().as_list()))

        with tf.variable_scope("project"):
            self.logits = tf.layers.dense(output, self.cfg.tag_vocab_size, use_bias=True)
            print("logits shape: {}".format(self.logits.get_shape().as_list()))
            self.variable_summaries(self.logits)