def __init__(self, evaluation, div=1.0, refinement=True, batch_norm=True, pyramid_type='VGG', md=4): """ input: md --- maximum displacement (for correlation. default: 4), after warpping """ super(LOCALNet_model, self).__init__() self.pyramid_type = pyramid_type if pyramid_type == 'VGG': nbr_features = [512, 512, 512, 256, 128, 64, 64] else: nbr_features = [196, 128, 96, 64, 32, 16, 3] self.div=div self.refinement=refinement self.leakyRELU = nn.LeakyReLU(0.1) self.corr = CorrelationVolume() # L2 feature normalisation self.l2norm = FeatureL2Norm() dd = np.cumsum([128,128,96,64,32]) nd = (2*md+1)**2 # constrained corr, 4 pixels on each side od = nd self.decoder4 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.deconv4 = deconv(2, 2, kernel_size=4, stride=2, padding=1) self.upfeat4 = deconv(od + dd[4], 2, kernel_size=4, stride=2, padding=1) nd = (2*md+1)**2 # constrained correlation, 4 pixels on each side od = nd + 4 self.decoder3 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.deconv3 = deconv(2, 2, kernel_size=4, stride=2, padding=1) self.upfeat3 = deconv(od+dd[4], 2, kernel_size=4, stride=2, padding=1) nd = (2*md+1)**2 # constrained correlation, 4 pixels on each side od = nd + 4 self.decoder2 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) # weights for refinement module self.dc_conv1 = conv(od+dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7 = predict_flow(32) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight.data, mode='fan_in') if m.bias is not None: m.bias.data.zero_() if pyramid_type == 'VGG': self.pyramid = VGGPyramid() else: raise ValueError("No other back-bone implemented, please choose VGG") self.evaluation=evaluation
def __init__(self, evaluation, div=1.0, refinement=True, refinement_32=False, batch_norm=True, residual=True, pyramid_type='VGG', md=4, input_decoder='flow_and_feat'): """ input: md --- maximum displacement (for correlation. default: 4), after warpping """ super(GLOCALNet_model, self).__init__() self.div = div self.refinement = refinement self.refinement_32 = refinement_32 self.residual = residual self.pyramid_type = pyramid_type if pyramid_type == 'VGG': nbr_features = [512, 512, 512, 256, 128, 64, 64] else: # these are PWC-Net feature back-bone nbr_features = [196, 128, 96, 64, 32, 16, 3] self.input_decoder = input_decoder self.leakyRELU = nn.LeakyReLU(0.1) self.corr = CorrelationVolume() # L2 feature normalisation self.l2norm = FeatureL2Norm() dd = np.cumsum([128, 128, 96, 64, 32]) # weights for decoder at different levels nd = 16 * 16 # global correlation od = nd + 2 self.decoder4 = CMDTop(in_channels=od, bn=batch_norm) self.deconv4 = deconv(2, 2, kernel_size=4, stride=2, padding=1) nd = (2 * md + 1)**2 # constrained correlation, 4 pixels on each side if self.input_decoder == 'flow_and_feat': od = nd + 2 elif self.input_decoder == 'flow_and_feat_and_feature': od = nd + 2 + nbr_features[-4] elif self.input_decoder == 'feature': od = nd + nbr_features[-4] elif self.input_decoder == 'corr_only': od = nd elif self.input_decoder == 'flow': od = nd + 2 self.decoder3 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.deconv3 = deconv(2, 2, kernel_size=4, stride=2, padding=1) self.upfeat3 = deconv(od + dd[4], 2, kernel_size=4, stride=2, padding=1) if self.refinement_32: self.dc_conv1_level3 = conv(od + dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2_level3 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3_level3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4_level3 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5_level3 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6_level3 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7_level3 = predict_flow(32) nd = (2 * md + 1)**2 # constrained correlation, 4 pixels on each side if self.input_decoder == 'flow_and_feat': od = nd + 4 elif self.input_decoder == 'flow_and_feat_and_feature': od = nd + 4 + nbr_features[-3] elif self.input_decoder == 'feature': od = nd + nbr_features[-3] elif self.input_decoder == 'corr_only': od = nd elif self.input_decoder == 'flow': od = nd + 2 self.decoder2 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.deconv2 = deconv(2, 2, kernel_size=4, stride=2, padding=1) # weights for refinement module self.dc_conv1 = conv(od + dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7 = predict_flow(32) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight.data, mode='fan_in') if m.bias is not None: m.bias.data.zero_() if pyramid_type == 'VGG': self.pyramid = VGGPyramid() else: raise ValueError( "No other back-bone implemented, please choose VGG") self.evaluation = evaluation
def __init__(self, evaluation, div=1.0, iterative_refinement=False, refinement_at_all_levels=False, refinement_at_adaptive_reso=True, batch_norm=True, pyramid_type='VGG', md=4, upfeat_channels=2, dense_connection=True, consensus_network=False, cyclic_consistency=True, decoder_inputs='corr_flow_feat'): """ input: md --- maximum displacement (for correlation. default: 4), after warpping """ super(GLUNet_model, self).__init__() self.div=div self.pyramid_type = pyramid_type self.leakyRELU = nn.LeakyReLU(0.1) self.l2norm = FeatureL2Norm() self.iterative_refinement = iterative_refinement #only during evaluation # where to put the refinement networks self.refinement_at_all_levels = refinement_at_all_levels self.refinement_at_adaptive_reso = refinement_at_adaptive_reso # definition of the inputs to the decoders self.decoder_inputs = decoder_inputs self.dense_connection = dense_connection self.upfeat_channels = upfeat_channels # improvement of the global correlation self.cyclic_consistency=cyclic_consistency self.consensus_network = consensus_network if self.cyclic_consistency: self.corr = FeatureCorrelation(shape='4D', normalization=False) elif consensus_network: ncons_kernel_sizes = [3, 3, 3] ncons_channels = [10, 10, 1] self.corr = FeatureCorrelation(shape='4D', normalization=False) # normalisation is applied in code here self.NeighConsensus = NeighConsensus(use_cuda=True, kernel_sizes=ncons_kernel_sizes, channels=ncons_channels) else: self.corr = CorrelationVolume() dd = np.cumsum([128,128,96,64,32]) # 16x16 nd = 16*16 # global correlation od = nd + 2 self.decoder4 = CMDTop(in_channels=od, bn=batch_norm) self.deconv4 = deconv(2, 2, kernel_size=4, stride=2, padding=1) # 32x32 nd = (2*md+1)**2 # constrained correlation, 4 pixels on each side if self.decoder_inputs == 'corr_flow_feat': od = nd + 2 elif self.decoder_inputs == 'corr': od = nd elif self.decoder_inputs == 'corr_flow': od = nd + 2 if dense_connection: self.decoder3 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) input_to_refinement = od + dd[4] else: self.decoder3 = OpticalFlowEstimatorNoDenseConnection(in_channels=od, batch_norm=batch_norm) input_to_refinement = 32 # weights for refinement module if self.refinement_at_all_levels or self.refinement_at_adaptive_reso: self.dc_conv1 = conv(input_to_refinement, 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7 = predict_flow(32) # 1/8 of original resolution nd = (2*md+1)**2 # constrained correlation, 4 pixels on each side if self.decoder_inputs == 'corr_flow_feat': od = nd + 2 elif self.decoder_inputs == 'corr': od = nd elif self.decoder_inputs == 'corr_flow': od = nd + 2 if dense_connection: self.decoder2 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) input_to_refinement = od + dd[4] else: self.decoder2 = OpticalFlowEstimatorNoDenseConnection(in_channels=od, batch_norm=batch_norm) input_to_refinement = 32 if self.decoder_inputs == 'corr_flow_feat': self.upfeat2 = deconv(input_to_refinement, self.upfeat_channels, kernel_size=4, stride=2, padding=1) self.deconv2 = deconv(2, 2, kernel_size=4, stride=2, padding=1) if refinement_at_all_levels: # weights for refinement module self.dc_conv1_level2 = conv(input_to_refinement, 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2_level2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3_level2 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4_level2 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5_level2 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6_level2 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7_level2 = predict_flow(32) # 1/4 of original resolution nd = (2*md+1)**2 # constrained correlation, 4 pixels on each side if self.decoder_inputs == 'corr_flow_feat': od = nd + self.upfeat_channels + 2 elif self.decoder_inputs == 'corr': od = nd elif self.decoder_inputs == 'corr_flow': od = nd + 2 if dense_connection: self.decoder1 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) input_to_refinement = od+dd[4] else: self.decoder1 = OpticalFlowEstimatorNoDenseConnection(in_channels=od, batch_norm=batch_norm) input_to_refinement = 32 self.l_dc_conv1 = conv(input_to_refinement, 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.l_dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.l_dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.l_dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.l_dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.l_dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.l_dc_conv7 = predict_flow(32) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight.data, mode='fan_in') if m.bias is not None: m.bias.data.zero_() if pyramid_type == 'ResNet': self.pyramid = ResNetPyramid() else: self.pyramid = VGGPyramid() self.evaluation=evaluation
def __init__(self, evaluation, div=1.0, batch_norm=True, pyramid_type='VGG', md=4, cyclic_consistency=False, consensus_network=True, iterative_refinement=False): """ input: md --- maximum displacement (for correlation. default: 4), after warpping """ super(SemanticGLUNet_model, self).__init__() self.div = div self.pyramid_type = pyramid_type self.leakyRELU = nn.LeakyReLU(0.1) self.iterative_refinement = iterative_refinement self.cyclic_consistency = cyclic_consistency self.consensus_network = consensus_network if self.cyclic_consistency: self.corr = FeatureCorrelation(shape='4D', normalization=False) elif consensus_network: ncons_kernel_sizes = [3, 3, 3] ncons_channels = [10, 10, 1] self.corr = FeatureCorrelation(shape='4D', normalization=False) # normalisation is applied in code here self.NeighConsensus = NeighConsensus( use_cuda=True, kernel_sizes=ncons_kernel_sizes, channels=ncons_channels) else: self.corr = CorrelationVolume() # L2 feature normalisation self.l2norm = FeatureL2Norm() dd = np.cumsum([128, 128, 96, 64, 32]) # weights for decoder at different levels nd = 16 * 16 # global correlation od = nd + 2 self.decoder4 = CMDTop(in_channels=od, bn=batch_norm) self.deconv4 = deconv(2, 2, kernel_size=4, stride=2, padding=1) nd = (2 * md + 1)**2 # constrained correlation, 4 pixels on each side od = nd + 2 self.decoder3 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) # weights for refinement module self.dc_conv1 = conv(od + dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.dc_conv7 = predict_flow(32) # 1/8 of original resolution nd = (2 * md + 1)**2 # constrained correlation, 4 pixels on each side od = nd + 2 # only gets the upsampled flow self.decoder2 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.deconv2 = deconv(2, 2, kernel_size=4, stride=2, padding=1) self.upfeat2 = deconv(od + dd[4], 2, kernel_size=4, stride=2, padding=1) # 1/4 of original resolution nd = (2 * md + 1)**2 # constrained correlation, 4 pixels on each side od = nd + 4 self.decoder1 = OpticalFlowEstimator(in_channels=od, batch_norm=batch_norm) self.l_dc_conv1 = conv(od + dd[4], 128, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.l_dc_conv2 = conv(128, 128, kernel_size=3, stride=1, padding=2, dilation=2, batch_norm=batch_norm) self.l_dc_conv3 = conv(128, 128, kernel_size=3, stride=1, padding=4, dilation=4, batch_norm=batch_norm) self.l_dc_conv4 = conv(128, 96, kernel_size=3, stride=1, padding=8, dilation=8, batch_norm=batch_norm) self.l_dc_conv5 = conv(96, 64, kernel_size=3, stride=1, padding=16, dilation=16, batch_norm=batch_norm) self.l_dc_conv6 = conv(64, 32, kernel_size=3, stride=1, padding=1, dilation=1, batch_norm=batch_norm) self.l_dc_conv7 = predict_flow(32) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight.data, mode='fan_in') if m.bias is not None: m.bias.data.zero_() if pyramid_type == 'ResNet': self.pyramid = ResNetPyramid() else: self.pyramid = VGGPyramid() self.evaluation = evaluation