Example #1
0
def run_pam(args):
    set_global_seeds(args['seed'])
    dataset = DataLoader(args['dataset'])
    X_train, X_test, X_val, y_train, y_test, y_val = dataset.prepare_train_test_val(
        args)
    model = Perceptron(feature_dim=X_train.shape[-1], margin=args['margin'])
    model.fit(X_train, y_train)
    return model.score(X_test, y_test)
Example #2
0
def find_best_margin(args):
    """ return `best_margin / 0.1` """
    set_global_seeds(args['seed'])
    dataset = DataLoader(args['dataset'])
    X_train, X_test, X_val, y_train, y_test, y_val = dataset.prepare_train_test_val(
        args)

    results = []
    for margin in MARGINS:
        model = Perceptron(feature_dim=X_train.shape[-1], margin=margin)
        model.fit(X_train, y_train)
        results.append(model.score(X_val, y_val))
    return results