Example #1
0
    def __init__(self,
                 min_cls_score=0.4,
                 min_ap_dist=0.64,
                 max_time_lost=30,
                 use_tracking=True,
                 use_refind=True,
                 models={},
                 configs={}):
        self.models = models
        self.configs = configs

        self.min_cls_score = min_cls_score
        self.min_ap_dist = min_ap_dist
        self.max_time_lost = max_time_lost

        self.kalman_filter = KalmanFilter()

        self.tracked_stracks = []  # type: list[STrack]
        self.lost_stracks = []  # type: list[STrack]
        self.removed_stracks = []  # type: list[STrack]

        self.use_refind = use_refind
        self.use_tracking = use_tracking
        self.classifier = PatchClassifier()
        self.reid_model = load_reid_model()

        self.frame_id = 0
Example #2
0
    def __init__(self, **kwargs):

        self.min_cls_score = kwargs['tracker_min_cls_score']
        self.min_ap_dist = kwargs['tracker_min_ap_dist']
        self.max_time_lost = kwargs['tracker_max_time_lost']

        self.kalman_filter = KalmanFilter()

        self.tracked_stracks = []  # type: list[STrack]
        self.lost_stracks = []  # type: list[STrack]
        self.removed_stracks = []  # type: list[STrack]

        self.use_refind = not kwargs['tracker_no_refind']
        self.use_tracking = not kwargs['tracker_no_tracking']
        self.classifier = PatchClassifier(
            ckpt=kwargs['tracker_squeezenet_ckpt'])
        self.reid_model = load_reid_model(
            ckpt=kwargs['tracker_googlenet_ckpt'])

        self.frame_id = 0
Example #3
0
    def __init__(self,
                 min_cls_score=0.4,
                 min_ap_dist=0.64,
                 max_time_lost=30,
                 use_tracking=True,
                 use_refind=True,
                 metric_net=False,
                 ide=False):

        self.min_cls_score = min_cls_score
        self.min_ap_dist = min_ap_dist
        self.max_time_lost = max_time_lost

        self.kalman_filter = KalmanFilter()

        self.tracked_stracks = []  # type: list[STrack]
        self.lost_stracks = []  # type: list[STrack]
        self.removed_stracks = []  # type: list[STrack]

        self.use_refind = use_refind
        self.use_tracking = use_tracking
        self.classifier = PatchClassifier()
        self.reid_model = load_reid_model(ide=ide)
        if ide:
            self.min_ap_dist = 25
        if metric_net:
            self.metric_net = MetricNet(feature_dim=512 if not ide else 256,
                                        num_class=2).cuda()
            checkpoint = torch.load(
                '/home/houyz/Code/DeepCC/src/hyper_score/logs/1fps_train_IDE_40/GT/metric_net_L2_1200.pth.tar'
            )
            model_dict = checkpoint['state_dict']
            self.metric_net.load_state_dict(model_dict)
            self.metric_net.eval()
            self.min_ap_dist = 1
        else:
            self.metric_net = None

        self.frame_id = 0
Example #4
0
 def __init__(self, cam, ide=False):
     self.reid_model = load_reid_model(ide=ide)
     self.frame_id = 0
     self.cam = cam
     self.lines = np.array([]).reshape(0, (512 if not ide else 256) + 3)