def get_config(is_train): class General: log_frequency = 10 name = __name__.rsplit("/")[-1].rsplit(".")[-1] batch_image = 2 if is_train else 1 fp16 = False class KvstoreParam: kvstore = "nccl" batch_image = General.batch_image gpus = [0, 1, 2, 3, 4, 5, 6, 7] fp16 = General.fp16 class NormalizeParam: # normalizer = normalizer_factory(type="syncbn", ndev=8, wd_mult=1.0) normalizer = normalizer_factory(type="gn") class BackboneParam: fp16 = General.fp16 # normalizer = NormalizeParam.normalizer normalizer = normalizer_factory(type="fixbn") class NeckParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class HeadParam: num_class = 1 + 80 fp16 = General.fp16 normalizer = NormalizeParam.normalizer batch_image = General.batch_image class point_generate: num_points = 9 scale = 4 stride = (8, 16, 32, 64, 128) # transform = "minmax" transform = "moment" class head: conv_channel = 256 point_conv_channel = 256 mean = None std = None class proposal: pre_nms_top_n = 1000 post_nms_top_n = None nms_thr = None min_bbox_side = None class point_target: target_scale = 4 num_pos = 1 class bbox_target: pos_iou_thr = 0.5 neg_iou_thr = 0.5 min_pos_iou = 0.0 class focal_loss: alpha = 0.25 gamma = 2.0 class BboxParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer num_class = None image_roi = None batch_image = None class regress_target: class_agnostic = None mean = None std = None class RoiParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer out_size = None stride = None class DatasetParam: if is_train: image_set = ("coco_train2017", ) else: image_set = ("coco_val2017", ) backbone = Backbone(BackboneParam) neck = Neck(NeckParam) head = Head(HeadParam) detector = Detector() if is_train: train_sym = detector.get_train_symbol(backbone, neck, head) test_sym = None else: train_sym = None test_sym = detector.get_test_symbol(backbone, neck, head) class ModelParam: train_symbol = train_sym test_symbol = test_sym from_scratch = False random = True memonger = False memonger_until = "stage3_unit21_plus" class pretrain: prefix = "pretrain_model/resnet-v1-50" epoch = 0 fixed_param = ["conv0", "stage1", "gamma", "beta"] excluded_param = ["gn"] class OptimizeParam: class optimizer: type = "sgd" lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image momentum = 0.9 wd = 0.0001 clip_gradient = None class schedule: begin_epoch = 0 end_epoch = 6 lr_iter = [ 60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image) ] class warmup: type = "gradual" lr = 0.005 / 8 * len( KvstoreParam.gpus) * KvstoreParam.batch_image / 3 iter = 500 class TestParam: min_det_score = 0.05 # filter appended boxes max_det_per_image = 100 def process_roidb(x): return x def process_output(x, y): return x class model: prefix = "experiments/{}/checkpoint".format(General.name) epoch = OptimizeParam.schedule.end_epoch class nms: type = "nms" thr = 0.5 class coco: annotation = "data/coco/annotations/instances_minival2014.json" # data processing class NormParam: mean = (122.7717, 115.9465, 102.9801) # RGB order std = (1.0, 1.0, 1.0) class ResizeParam: short = 800 long = 1333 class PadParam: short = 800 long = 1333 max_num_gt = 100 class RenameParam: mapping = dict(image="data") from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \ ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \ RenameRecord from models.retinanet.input import Norm2DImage if is_train: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Flip2DImageBbox(), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data"] label_name = ["gt_bbox"] else: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "im_id", "rec_id"] label_name = [] from models.retinanet import metric as cls_metric import core.detection_metric as box_metric cls_acc_metric = cls_metric.FGAccMetric( "FGAcc", ["cls_loss_output", "point_refine_labels_output"], []) box_init_l1_metric = box_metric.L1( "InitL1", ["pts_init_loss_output", "points_init_labels_output"], []) box_refine_l1_metric = box_metric.L1( "RefineL1", ["pts_refine_loss_output", "point_refine_labels_output"], []) metric_list = [cls_acc_metric, box_init_l1_metric, box_refine_l1_metric] return General, KvstoreParam, HeadParam, RoiParam, BboxParam, DatasetParam, \ ModelParam, OptimizeParam, TestParam, \ transform, data_name, label_name, metric_list
def get_config(is_train): class General: log_frequency = 10 name = __name__.rsplit("/")[-1].rsplit(".")[-1] batch_image = 2 if is_train else 1 fp16 = False class KvstoreParam: kvstore = "nccl" batch_image = General.batch_image gpus = [0, 1, 2, 3, 4, 5, 6, 7] fp16 = General.fp16 class NormalizeParam: normalizer = normalizer_factory(type="fixbn") class BackboneParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class NeckParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class RpnParam: num_class = 1 + 80 fp16 = General.fp16 normalizer = NormalizeParam.normalizer batch_image = General.batch_image class anchor_generate: scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0)) ratio = (0.5, 1.0, 2.0) stride = (8, 16, 32, 64, 128) image_anchor = None class head: conv_channel = 256 mean = None std = None class proposal: pre_nms_top_n = 1000 post_nms_top_n = None nms_thr = None min_bbox_side = None min_det_score = 0.05 # filter score in network class subsample_proposal: proposal_wo_gt = None image_roi = None fg_fraction = None fg_thr = None bg_thr_hi = None bg_thr_lo = None class bbox_target: num_reg_class = None class_agnostic = None weight = None mean = None std = None class focal_loss: alpha = 0.25 gamma = 2.0 class BboxParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer num_class = None image_roi = None batch_image = None class regress_target: class_agnostic = None mean = None std = None class RoiParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer out_size = None stride = None class DatasetParam: if is_train: image_set = ("coco_train2014", "coco_valminusminival2014") else: image_set = ("coco_minival2014", ) backbone = Backbone(BackboneParam) neck = Neck(NeckParam) rpn_head = RpnHead(RpnParam) detector = Detector() if is_train: train_sym = detector.get_train_symbol(backbone, neck, rpn_head) test_sym = None else: train_sym = None test_sym = detector.get_test_symbol(backbone, neck, rpn_head) class ModelParam: train_symbol = train_sym test_symbol = test_sym from_scratch = False random = True memonger = False memonger_until = "stage3_unit21_plus" class pretrain: prefix = "pretrain_model/resnet-v1-101" epoch = 0 fixed_param = ["conv0", "stage1", "gamma", "beta"] class OptimizeParam: class optimizer: type = "sgd" lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image momentum = 0.9 wd = 0.0001 clip_gradient = None class schedule: begin_epoch = 0 end_epoch = 6 lr_iter = [ 60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image) ] class warmup: type = "gradual" lr = 0.005 / 8 * len( KvstoreParam.gpus) * KvstoreParam.batch_image / 3 iter = 500 class TestParam: min_det_score = 0 # filter appended boxes max_det_per_image = 100 process_roidb = lambda x: x process_output = lambda x, y: x class model: prefix = "experiments/{}/checkpoint".format(General.name) epoch = OptimizeParam.schedule.end_epoch class nms: type = "nms" thr = 0.5 class coco: annotation = "data/coco/annotations/instances_minival2014.json" # data processing class NormParam: mean = (122.7717, 115.9465, 102.9801) # RGB order std = (1.0, 1.0, 1.0) class ResizeParam: short = 800 long = 1333 class PadParam: short = 800 long = 1333 max_num_gt = 100 class AnchorTarget2DParam: def __init__(self): self.generate = self._generate() class _generate: def __init__(self): self.short = (100, 50, 25, 13, 7) self.long = (167, 84, 42, 21, 11) self.stride = (8, 16, 32, 64, 128) scales = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0)) aspects = (0.5, 1.0, 2.0) class assign: allowed_border = 9999 pos_thr = 0.5 neg_thr = 0.4 min_pos_thr = 0.0 class sample: image_anchor = None pos_fraction = None class RenameParam: mapping = dict(image="data") from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \ ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \ RenameRecord from models.retinanet.input import PyramidAnchorTarget2D, Norm2DImage if is_train: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Flip2DImageBbox(), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), PyramidAnchorTarget2D(AnchorTarget2DParam()), RenameRecord(RenameParam.mapping) ] data_name = ["data"] label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"] else: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "im_id", "rec_id"] label_name = [] from models.retinanet import metric rpn_acc_metric = metric.FGAccMetric("FGAcc", ["cls_loss_output"], ["rpn_cls_label"]) metric_list = [rpn_acc_metric] return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \ ModelParam, OptimizeParam, TestParam, \ transform, data_name, label_name, metric_list
def get_config(is_train): class General: log_frequency = 10 name = __name__.rsplit("/")[-1].rsplit(".")[-1] batch_image = 2 if is_train else 1 fp16 = False class KvstoreParam: kvstore = "nccl" batch_image = General.batch_image gpus = [0, 1, 2, 3, 4, 5, 6, 7] fp16 = General.fp16 class NormalizeParam: normalizer = normalizer_factory(type="fixbn") class BackboneParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class NeckParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class RpnParam: num_class = 1 + 80 fp16 = General.fp16 normalizer = NormalizeParam.normalizer batch_image = General.batch_image class anchor_generate: scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0)) ratio = (0.5, 1.0, 2.0) stride = (8, 16, 32, 64, 128) max_side = 1440 class anchor_assign: allowed_border = 9999 bbox_thr = 0.6 pre_anchor_top_n = 50 class head: conv_channel = 256 mean = (.0, .0, .0, .0) std = (0.1, 0.1, 0.2, 0.2) class proposal: pre_nms_top_n = 1000 post_nms_top_n = None nms_thr = None min_bbox_side = None class subsample_proposal: proposal_wo_gt = None image_roi = None fg_fraction = None fg_thr = None bg_thr_hi = None bg_thr_lo = None class bbox_target: num_reg_class = None class_agnostic = None weight = None mean = None std = None class focal_loss: alpha = 0.5 gamma = 2.0 class BboxParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer num_class = None image_roi = None batch_image = None class regress_target: class_agnostic = None mean = None std = None class RoiParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer out_size = None stride = None class DatasetParam: if is_train: image_set = ("coco_train2017", ) else: image_set = ("coco_val2017", ) backbone = Backbone(BackboneParam) neck = Neck(NeckParam) rpn_head = RpnHead(RpnParam) detector = Detector() if is_train: train_sym = detector.get_train_symbol(backbone, neck, rpn_head) test_sym = None else: train_sym = None test_sym = detector.get_test_symbol(backbone, neck, rpn_head) class ModelParam: train_symbol = train_sym test_symbol = test_sym from_scratch = False random = True memonger = False memonger_until = "stage3_unit21_plus" class pretrain: prefix = "pretrain_model/resnet-v1-101" epoch = 0 fixed_param = ["conv0", "stage1", "gamma", "beta"] def process_weight(sym, arg, aux): for stride in RpnParam.anchor_generate.stride: add_anchor_to_arg(sym, arg, aux, RpnParam.anchor_generate.max_side, stride, RpnParam.anchor_generate.scale, RpnParam.anchor_generate.ratio) class OptimizeParam: class optimizer: type = "sgd" lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image momentum = 0.9 wd = 0.0001 clip_gradient = 35 class schedule: begin_epoch = 0 end_epoch = 6 lr_iter = [ 60000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image) ] class warmup: type = "gradual" lr = 0.005 / 8 * len( KvstoreParam.gpus) * KvstoreParam.batch_image / 3 iter = 1000 class TestParam: min_det_score = 0.05 # filter appended boxes max_det_per_image = 100 def process_roidb(x): return x # noqa: E704 def process_output(x, y): return x # noqa: E704 class model: prefix = "experiments/{}/checkpoint".format(General.name) epoch = OptimizeParam.schedule.end_epoch class nms: type = "nms" thr = 0.5 class coco: annotation = "data/coco/annotations/instances_minival2014.json" # data processing class NormParam: mean = (122.7717, 115.9465, 102.9801) # RGB order std = (1.0, 1.0, 1.0) class ResizeParam: short = 800 long = 1333 class PadParam: short = 800 long = 1333 max_num_gt = 100 class RenameParam: mapping = dict(image="data") from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \ ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \ RenameRecord from models.retinanet.input import Norm2DImage if is_train: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Flip2DImageBbox(), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data"] label_name = ["gt_bbox", "im_info"] else: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "im_id", "rec_id"] label_name = [] import core.detection_metric as metric pos_loss = metric.ScalarLoss("PosLoss", ["positive_loss_output"], []) neg_loss = metric.ScalarLoss("NegLoss", ["negative_loss_output"], []) metric_list = [pos_loss, neg_loss] return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \ ModelParam, OptimizeParam, TestParam, \ transform, data_name, label_name, metric_list