def trainModelPipe(self, loss_type): encoder = EncoderRNN(input_size=self.n_features, hidden_size=self.hidden_size, num_grulstm_layers=self.num_grulstm_layers, batch_size=self.batch_size).to(self.device) decoder = DecoderRNN(input_size=1, hidden_size=self.hidden_size, num_grulstm_layers=self.num_grulstm_layers, fc_units=16, output_size=1).to(self.device) net_gru = Net_GRU(encoder, decoder, self.N_output, self.device).to(self.device) self.train_model(net_gru, batch_size=self.batch_size, loss_type=loss_type, learning_rate=0.001, epochs=500, gamma=self.gamma, print_every=50, eval_every=50, verbose=1, alpha=self.alpha) return net_gru
np.array(losses_tdi).mean()) print(f"batch_size: {batch_size}") ## TODO run with dtw implementation encoder = EncoderRNN(input_size=3, hidden_size=128, num_grulstm_layers=2, batch_size=batch_size).to(device) decoder = DecoderRNN(input_size=1, hidden_size=128, num_grulstm_layers=2, fc_units=16, output_size=1).to(device) net_gru_dtw = Net_GRU(encoder, decoder, N_output, device).to(device) train_model(net_gru_dtw, batch_size=batch_size, loss_type='dtw', learning_rate=0.001, epochs=500, gamma=gamma, print_every=50, eval_every=50, verbose=1, alpha=alpha, target_mean=target_log_mean, target_std=target_log_std) encoder = EncoderRNN(input_size=3,
print(' Eval mse= ', np.array(losses_mse).mean(), ' dtw= ', np.array(losses_dtw).mean(), ' tdi= ', np.array(losses_tdi).mean()) encoder = EncoderRNN(input_size=1, hidden_size=128, num_grulstm_layers=1, batch_size=batch_size).to(device) decoder = DecoderRNN(input_size=1, hidden_size=128, num_grulstm_layers=1, fc_units=16, output_size=1).to(device) net_gru_dilate = Net_GRU(encoder, decoder, N_output, device).to(device) train_model(net_gru_dilate, loss_type='dilate', learning_rate=0.001, epochs=500, gamma=gamma, print_every=50, eval_every=50, verbose=1) encoder = EncoderRNN(input_size=1, hidden_size=128, num_grulstm_layers=1, batch_size=batch_size).to(device) decoder = DecoderRNN(input_size=1, hidden_size=128,