def __init__(self, model_path): self.voca_size = 30522 self.hp = hyperparams.HPFAD() self.model_dir = cpath.model_path self.task = transformer_next_sent(self.hp, 2, self.voca_size, False) self.sess = init_session() self.sess.run(tf.global_variables_initializer()) self.load_model_white(model_path) self.batch_size = 64
def __init__(self, model_path, num_classes): self.voca_size = 30522 load_names = ['bert', "output_bias", "output_weights"] self.hp = hyperparams.HPFAD() self.model_dir = cpath.model_path self.task = transformer_logit(self.hp, num_classes, self.voca_size, False) self.sess = init_session() self.sess.run(tf.global_variables_initializer()) self.load_model_white(model_path, load_names) self.batch_size = 64
def train_adhoc_fad(): hp = hyperparams.HPFAD() hp.batch_size = 16 e = Experiment(hp) e_config = ExperimentConfig() e_config.name = "Adhoc_{}".format("FAD") e_config.num_epoch = 4 e_config.save_interval = 10 * 60 # 60 minutes e_config.load_names = ['bert'] #, 'reg_dense'] vocab_size = 30522 data_loader = data_sampler.DataLoaderFromFile(hp.batch_size, vocab_size) load_id = ("uncased_L-12_H-768_A-12", 'bert_model.ckpt') #load_id = ("Adhoc_I2", 'model-290') e.train_adhoc2(e_config, data_loader, load_id)
def predict_adhoc512(): hp = hyperparams.HPFAD() hp.batch_size = 16 e = Experiment(hp) e_config = ExperimentConfig() e_config.name = "Adhoc_J_{}".format("512") e_config.num_epoch = 4 e_config.save_interval = 10 * 60 # 60 minutes e_config.load_names = ['bert', 'reg_dense'] vocab_size = 30522 payload_path = os.path.join(cpath.data_path, "robust_payload", "enc_payload_512.pickle") task_idx = int(sys.argv[2]) print(task_idx) load_id = ("Adhoc_J_512", 'model-6180') e.predict_robust(e_config, vocab_size, load_id, payload_path, task_idx)