Example #1
0
def evaluate(args, model, loader, num_samples):
    ade_outer, fde_outer = [], []
    total_traj = 0

    with torch.no_grad():
        for batch_idx, data in enumerate(loader):
            data = [tensor.cuda() for tensor in data]
            (obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, obs_goals,
             pred_goals_gt, non_linear_ped, loss_mask, seq_start_end) = data

            # goals one-hot encoding
            obs_goals_ohe = to_goals_one_hot(obs_goals, args.g_dim).cuda()

            # adj matrix for current batch
            if args.adjacency_type == 0:
                adj_out = compute_adjs(args, seq_start_end).cuda()
            elif args.adjacency_type == 1:
                adj_out = compute_adjs_distsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()
            elif args.adjacency_type == 2:
                adj_out = compute_adjs_knnsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()

            kld, nll, ce, h = model(obs_traj, obs_traj_rel, obs_goals_ohe,
                                    seq_start_end, adj_out)

            ade, fde = [], []
            total_traj += obs_traj.shape[1]

            for _ in range(num_samples):
                samples_rel = model.sample(args.pred_len, h, obs_traj[-1],
                                           obs_goals_ohe[-1], seq_start_end)
                samples = relative_to_abs(samples_rel, obs_traj[-1])

                ade.append(
                    average_displacement_error(samples,
                                               pred_traj_gt,
                                               mode='raw'))
                fde.append(
                    final_displacement_error(samples[-1, :, :],
                                             pred_traj_gt[-1, :, :],
                                             mode='raw'))

            ade_sum = evaluate_helper(ade, seq_start_end)
            fde_sum = evaluate_helper(fde, seq_start_end)

            ade_outer.append(ade_sum)
            fde_outer.append(fde_sum)

        ade = sum(ade_outer) / (total_traj * args.pred_len)
        fde = sum(fde_outer) / total_traj

    return ade, fde
Example #2
0
def train(args, epch, train_loader, model, warmup, optimizer, writer):
    train_loss = 0
    kld_loss = 0
    nll_loss = 0

    start = time()

    model.train()
    for batch_idx, data in enumerate(train_loader):
        data = [tensor.cuda() for tensor in data]
        (obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel,
         non_linear_ped, loss_mask, seq_start_end) = data

        seq_len = len(obs_traj) + len(pred_traj_gt)
        assert seq_len == args.obs_len + args.pred_len

        # adj matrix for current batch
        if args.adjacency_type == 0:
            adj_out = compute_adjs(args, seq_start_end).cuda()
        elif args.adjacency_type == 1:
            adj_out = compute_adjs_distsim(args, seq_start_end,
                                           obs_traj.detach().cpu(),
                                           pred_traj_gt.detach().cpu()).cuda()
        elif args.adjacency_type == 2:
            adj_out = compute_adjs_knnsim(args, seq_start_end,
                                          obs_traj.detach().cpu(),
                                          pred_traj_gt.detach().cpu()).cuda()

        optimizer.zero_grad()
        kld, nll, _ = model(obs_traj_rel, adj_out)
        loss = (warmup[epch - 1] * kld) + nll
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        train_loss += loss.item()
        kld_loss += kld.item()
        nll_loss += nll.item()

        if batch_idx % args.print_every_batch == 0:
            writer.add_scalar('train/loss_items', loss.item(),
                              epch) if not DEBUG else None

    avg_loss = train_loss / len(train_loader.dataset)
    writer.add_scalar('train/Loss', avg_loss, epch) if not DEBUG else None
    avg_kld_loss = kld_loss / len(train_loader.dataset)
    avg_nll_loss = nll_loss / len(train_loader.dataset)
    writer.add_scalar('train/KLD_loss', avg_kld_loss,
                      epch) if not DEBUG else None
    writer.add_scalar('train/NLL_loss', avg_nll_loss,
                      epch) if not DEBUG else None

    end = time()
    elapsed = str(timedelta(seconds=(ceil(end - start))))
    logging.info('Epoch [{}], time elapsed: {}'.format(epch, elapsed))
Example #3
0
def test(args, epch, test_loader, model, warmup, writer):
    test_loss = 0
    kld_loss = 0
    nll_loss = 0

    total_traj = 0
    ade = 0
    fde = 0

    model.eval()
    with torch.no_grad():
        for batch_idx, data in enumerate(test_loader):
            data = [tensor.cuda() for tensor in data]
            (obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel,
             non_linear_ped, loss_mask, seq_start_end) = data

            # adj matrix for current batch
            if args.adjacency_type == 0:
                adj_out = compute_adjs(args, seq_start_end).cuda()
            elif args.adjacency_type == 1:
                adj_out = compute_adjs_distsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()
            elif args.adjacency_type == 2:
                adj_out = compute_adjs_knnsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()

            kld, nll, h = model(obs_traj_rel, adj_out)
            loss = (warmup[epch - 1] * kld) + nll

            test_loss += loss.item()
            kld_loss += kld.item()
            nll_loss += nll.item()

            if batch_idx % args.print_every_batch == 0:
                writer.add_scalar('test/loss_items', loss.item(),
                                  epch) if not DEBUG else None

            # predict trajectories from latest h
            samples_rel = model.sample(args.pred_len, h, obs_traj[-1],
                                       seq_start_end)
            samples = relative_to_abs(samples_rel, obs_traj[-1])

            total_traj += samples.shape[1]  # num_seqs
            ade += average_displacement_error(samples, pred_traj_gt)
            fde += final_displacement_error(samples[-1, :, :],
                                            pred_traj_gt[-1, :, :])

        mean_loss = loss / len(test_loader.dataset)
        writer.add_scalar('test/Loss', mean_loss, epch) if not DEBUG else None
        mean_kld_loss = kld_loss / len(test_loader.dataset)
        mean_nll_loss = nll_loss / len(test_loader.dataset)
        writer.add_scalar('test/KLD_loss', mean_kld_loss,
                          epch) if not DEBUG else None
        writer.add_scalar('test/NLL_loss', mean_nll_loss,
                          epch) if not DEBUG else None

        # ADE
        ade_val = ade / (total_traj * args.pred_len)
        writer.add_scalar('test/ADE', ade_val, epch) if not DEBUG else None

        # FDE
        fde_val = fde / total_traj
        writer.add_scalar('test/FDE', fde_val, epch) if not DEBUG else None

        # plotting
        if DEBUG:
            obs = obs_traj.cpu().numpy()
            pred = samples.cpu().numpy()
            pred_gt = pred_traj_gt.cpu().numpy()
            plot_traj(obs, pred_gt, pred, seq_start_end, writer, epch)
Example #4
0
def validate(args, epch, valid_loader, model, warmup, lr_scheduler, writer):
    test_loss = 0
    kld_loss = 0
    nll_loss = 0

    total_traj = 0
    ade = 0
    fde = 0

    model.eval()
    with torch.no_grad():
        for batch_idx, data in enumerate(valid_loader):
            data = [tensor.cuda() for tensor in data]
            (obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel,
             non_linear_ped, loss_mask, seq_start_end) = data

            # adj matrix for current batch
            if args.adjacency_type == 0:
                adj_out = compute_adjs(args, seq_start_end).cuda()
            elif args.adjacency_type == 1:
                adj_out = compute_adjs_distsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()
            elif args.adjacency_type == 2:
                adj_out = compute_adjs_knnsim(
                    args, seq_start_end,
                    obs_traj.detach().cpu(),
                    pred_traj_gt.detach().cpu()).cuda()

            kld, nll, h = model(obs_traj_rel, adj_out)
            loss = (warmup[epch - 1] * kld) + nll

            test_loss += loss.item()
            kld_loss += kld.item()
            nll_loss += nll.item()

            if batch_idx % args.print_every_batch == 0:
                writer.add_scalar('validation/loss_items', loss.item(),
                                  epch) if not DEBUG else None

            # predict trajectories from latest h
            samples_rel = model.sample(args.pred_len, h, obs_traj[-1],
                                       seq_start_end)
            samples = relative_to_abs(samples_rel, obs_traj[-1])

            total_traj += samples.shape[1]  # num_seqs
            ade += average_displacement_error(samples, pred_traj_gt)
            fde += final_displacement_error(samples[-1, :, :],
                                            pred_traj_gt[-1, :, :])

        mean_loss = loss / len(valid_loader.dataset)
        writer.add_scalar('validation/Loss', mean_loss,
                          epch) if not DEBUG else None
        mean_kld_loss = kld_loss / len(valid_loader.dataset)
        mean_nll_loss = nll_loss / len(valid_loader.dataset)
        writer.add_scalar('validation/KLD_loss', mean_kld_loss,
                          epch) if not DEBUG else None
        writer.add_scalar('validation/NLL_loss', mean_nll_loss,
                          epch) if not DEBUG else None

        # ADE
        ade_val = ade / (total_traj * args.pred_len)
        writer.add_scalar('validation/ADE', ade_val,
                          epch) if not DEBUG else None

        # FDE
        fde_val = fde / total_traj
        writer.add_scalar('validation/FDE', fde_val,
                          epch) if not DEBUG else None

        # eventually scheduler step
        if args.lr_scheduler and epch > 200:
            # let the metric settle for the first n epochs, then let the scheduler take care of the LR
            lr_scheduler.step(ade_val)

    return ade_val, fde_val
Example #5
0
def train(args, epch, train_loader, model, warmup, optimizer, writer):
    train_loss = 0
    kld_loss = 0
    nll_loss = 0
    cross_entropy_loss = 0

    start = time()

    model.train()
    for batch_idx, data in enumerate(train_loader):
        data = [tensor.cuda() for tensor in data]
        (obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_rel_gt,
         obs_goals, pred_goals_gt, seq_start_end) = data
        #seq_start_end = seq_start_end.transpose(0, 1)

        seq_len = len(obs_traj) + len(pred_traj_gt)
        assert seq_len == args.obs_len + args.pred_len

        # goals one-hot encoding
        obs_goals_ohe = to_goals_one_hot(obs_goals, args.g_dim).cuda()
        pred_goals_gt_ohe = to_goals_one_hot(pred_goals_gt, args.g_dim).cuda()

        # adj matrix for current batch
        if args.adjacency_type == 0:
            adj_out = compute_adjs(args, seq_start_end).cuda()
        elif args.adjacency_type == 1:
            adj_out = compute_adjs_distsim(args, seq_start_end, obs_traj.detach().cpu(), pred_traj_gt.detach().cpu()).cuda()
        elif args.adjacency_type == 2:
            adj_out = compute_adjs_knnsim(args, seq_start_end, obs_traj.detach().cpu(), pred_traj_gt.detach().cpu()).cuda()

        # during training we feed the entire trjs to the model
        all_traj = torch.cat((obs_traj, pred_traj_gt), dim=0)
        all_traj_rel = torch.cat((obs_traj_rel, pred_traj_rel_gt), dim=0)
        all_goals_ohe = torch.cat((obs_goals_ohe, pred_goals_gt_ohe), dim=0)

        optimizer.zero_grad()
        kld, nll, ce, _ = model(all_traj, all_traj_rel, all_goals_ohe, seq_start_end, adj_out)
        loss = (warmup[epch-1] * kld) + nll + (ce * args.CE_weight)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        train_loss += loss.item()
        kld_loss += kld.item()
        nll_loss += nll.item()
        cross_entropy_loss += ce.item()

        if batch_idx % args.print_every_batch == 0:
            writer.add_scalar('train/loss_items', loss.item(), epch) if not DEBUG else None

    avg_loss = train_loss / len(train_loader.dataset)
    writer.add_scalar('train/Loss', avg_loss, epch) if not DEBUG else None
    avg_kld_loss = kld_loss / len(train_loader.dataset)
    avg_nll_loss = nll_loss / len(train_loader.dataset)
    avg_cross_entropy_loss = cross_entropy_loss / len(train_loader.dataset)
    writer.add_scalar('train/KLD_loss', avg_kld_loss, epch) if not DEBUG else None
    writer.add_scalar('train/NLL_loss', avg_nll_loss, epch) if not DEBUG else None
    writer.add_scalar('train/CE_loss', avg_cross_entropy_loss, epch) if not DEBUG else None

    end = time()
    elapsed = str(timedelta(seconds=(ceil(end - start))))
    logging.info('Epoch [{}], time elapsed: {}'.format(epch, elapsed))