Example #1
0
def main():
    model_config = config.get_model_config()
    num_input_words = model_config['dim_lang']
    world_state_size = model_config['dim_world']
    num_output_actions = model_config['dim_action']
    hidden_size = model_config['hidden_size']
    learning_rate = model_config['learning_rate']

    encoder = models.EncoderRNN(num_input_words, hidden_size, bidirectionality=True)
    attn_decoder = models.AttnDecoderRNN(hidden_size, world_state_size, num_output_actions)

    trainIters(encoder, attn_decoder, 1, learning_rate)

    id_process = os.getpid()
    time_current = datetime.datetime.now().isoformat()
    tag_model = '_PID=' + str(id_process) + '_TIME=' + time_current
    path_track = './tracks/track' + tag_model + '/'

    command_mkdir = 'mkdir -p ' + os.path.abspath(
        path_track
    )
    os.system(command_mkdir)
    #

    ENCODER_PATH = path_track + 'encoder.pkl'
    DECODER_PATH = path_track + 'decoder.pkl'
    torch.save(encoder, ENCODER_PATH)
    torch.save(attn_decoder, DECODER_PATH)
def main():
    input_lang, output_lang, pairs = utils.prepare_data(
        lang_name=target_language, _dir='data')

    encoder = model.EncoderRNN(input_lang.n_words, hidden_size, n_layers)
    decoder = model.AttentionDecoderRNN(attn_model,
                                        hidden_size,
                                        output_lang.n_words,
                                        n_layers,
                                        dropout_p=dropout_p)

    print("Encoder-Model: ", encoder)
    print("Decoder-Model: ", decoder)

    # Initialize optimizers and criterion

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    criterion = nn.NLLLoss()

    start = time.time()
    plot_losses = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total = 0  # Reset every plot_every

    # Begin training
    for epoch in range(1, n_epochs + 1):

        training_pair = utils.variables_from_pair(random.choice(pairs),
                                                  input_lang, output_lang)
        input_variable = training_pair[0]
        target_variable = training_pair[1]

        # Run the train step
        epoch_loss = train(input_variable, target_variable, encoder, decoder,
                           encoder_optimizer, decoder_optimizer, criterion)

        print_loss_total += epoch_loss
        plot_loss_total += epoch_loss

        if epoch % print_every == 0:
            print_loss_avg = print_loss_total / print_every
            print_loss_total = 0
            time_since = utils.time_since(start, epoch / n_epochs)
            print('%s (%d %d%%) %.4f' %
                  (time_since, epoch, epoch / n_epochs * 100, print_loss_avg))

        if epoch % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    save_model(encoder, 'data/encoder_state_' + target_language)
    save_model(decoder, 'data/decoder_state_' + target_language)
    save_model(decoder.attention,
               'data/decoder_attention_state_' + target_language)
    utils.show_plot(plot_losses)
def main():
    model_config = config.get_model_config()
    num_input_words = model_config['dim_lang']
    world_state_size = model_config['dim_world']
    num_output_actions = model_config['dim_action']
    hidden_size = model_config['hidden_size']
    learning_rate = model_config['learning_rate']

    encoder = models.EncoderRNN(num_input_words, hidden_size, bidirectionality=True)
    attn_decoder = models.AttnDecoderRNN(hidden_size, world_state_size, num_output_actions)

    trainIters(encoder, attn_decoder, 3, learning_rate)
Example #4
0
    else:
        checkpoint = torch.load(loadFilename, map_location=torch.device("cpu"))

    encoder_sd = checkpoint["en"]
    decoder_sd = checkpoint["de"]
    encoder_optimizer_sd = checkpoint["en_opt"]
    decoder_optimizer_sd = checkpoint["de_opt"]
    embedding_sd = checkpoint["embedding"]
    voc = vocab.Voc(corpus_name)
    voc.__dict__ = checkpoint["voc_dict"]

    # Initialize word embeddings
    embedding = nn.Embedding(voc.num_words, hidden_size)
    embedding.load_state_dict(embedding_sd)
    # Initialize encoder & decoder models
    encoder = models.EncoderRNN(hidden_size, embedding, encoder_n_layers,
                                dropout)
    decoder = models.LuongAttnDecoderRNN(attn_model, embedding, hidden_size,
                                         voc.num_words, decoder_n_layers,
                                         dropout)
    # Load trained model params
    encoder.load_state_dict(encoder_sd)
    decoder.load_state_dict(decoder_sd)
    # Use appropriate device
    encoder = encoder.to(device)
    decoder = decoder.to(device)
    # Set dropout layers to eval mode
    encoder.eval()
    decoder.eval()

    searcher = models.GreedySearchDecoder(encoder, decoder)
Example #5
0
layers_dec = 1
dropout_p = 0
num_hidden = 512

device = torch.device("cuda")
model_path = args.model_path
data_path = args.data_path

for detector in ['yolo']:
    for fold in [1, 2, 3]:

        print(detector + ' fold ' + str(fold))

        print('loading model')

        encoder = models.EncoderRNN(device, num_hidden, layers_enc)
        encoder = encoder.to(device)
        encoder = encoder.float()
        decoder = models.DecoderRNN(device, num_hidden, dropout_p, layers_dec)
        decoder = decoder.to(device)
        decoder = decoder.float()

        try:
            encoder_path = model_path + '/encoder_' + detector + str(
                fold) + '_gru.weights'
            decoder_path = model_path + '/decoder_' + detector + str(
                fold) + '_gru.weights'
            encoder.load_state_dict(torch.load(encoder_path))
            decoder.load_state_dict(torch.load(decoder_path))
        except Exception:
            print('Failed to load model from ' + str(model_path))
Example #6
0
from torch.autograd import Variable
from torch import optim
import torch.nn.functional as F

import load
import models
import config as cfg
import train
import communicate as comm

corpus_QA, pairs = load.prepareData('augmented_train')
load.updateData(corpus_QA, 'dict')

# Initialize models
encoder = models.EncoderRNN(corpus_QA.n_words,
                            cfg.hidden_size,
                            cfg.n_layers,
                            dropout=cfg.dropout)
decoder = models.LuongAttnDecoderRNN(cfg.attn_model,
                                     cfg.hidden_size,
                                     corpus_QA.n_words,
                                     cfg.n_layers,
                                     dropout=cfg.dropout)

# Initialize optimizers and criterion
encoder_optimizer = optim.Adam(encoder.parameters(), lr=cfg.learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(),
                               lr=cfg.learning_rate *
                               cfg.decoder_learning_ratio)
criterion = nn.CrossEntropyLoss()

# Move models to GPU
Example #7
0
import utils
import models as model
from language import Language

# Parse argument for input sentence

language = 'ben'
input_lang, output_lang, pairs = utils.prepare_data(language, _dir='data')
attn_model = 'dot'
hidden_size = 500
n_layers = 4
dropout_p = 0.05

# Initialize models
encoder = model.EncoderRNN(input_lang.n_words, hidden_size, n_layers)
decoder = model.AttentionDecoderRNN(attn_model, hidden_size, output_lang.n_words, n_layers, dropout_p=dropout_p)

print("Load parameters")

# Load model parameters
encoder.load_state_dict(torch.load('data/encoder_state_{}'.format(language)))
decoder.load_state_dict(torch.load('data/decoder_state_{}'.format(language)))
decoder.attention.load_state_dict(torch.load('data/decoder_attention_state_{}'.format(language)))


def evaluate(sentence, max_length=10):
    input_variable = utils.variable_from_sentence(input_lang, sentence)

    # Run through encoder
    encoder_hidden = encoder.init_hidden()
Example #8
0
def main():
    # Get arguments
    args = parse_args()

    # Set random seed
    torch.manual_seed(args.seed)

    # Cuda
    use_cuda = False
    if torch.cuda.is_available():
        if not args.cuda:
            print("WARNING: You have a CUDA device, so you \
            should probably run with --cuda")
        else:
            use_cuda = True
            torch.cuda.manual_seed(args.seed)

    # Load data + text fields
    print('=' * 89)
    train_iter, val_iter, test_iter, SRC, TRG = utils.load_dataset(
        batch_size=args.batch_size,
        use_pretrained_emb=args.pretrained_emb,
        save_dir=SAVE_DIR
    )
    print('=' * 89)

    # Intialize model
    enc = models.EncoderRNN(
        input_size=len(SRC.vocab),
        emb_size=(SRC.vocab.vectors.size(1)
                  if args.pretrained_emb == 'fastText'
                  else args.emb_size),
        embeddings=(SRC.vocab.vectors
                    if args.pretrained_emb == 'fastText'
                    else None),
        max_norm=args.emb_maxnorm,
        padding_idx=SRC.vocab.stoi['<pad>'],
        hidden_size=args.hidden_size,
        num_layers=args.num_layers,
        dropout=args.dropout,
        bidirectional=args.bidirectional
    )
    decoder = models.AttnDecoderRNN if args.attention else models.DecoderRNN
    dec = decoder(
        enc_num_directions=enc.num_directions,
        enc_hidden_size=args.hidden_size,
        use_context=args.use_context,
        input_size=len(TRG.vocab),
        emb_size=(TRG.vocab.vectors.size(1)
                  if args.pretrained_emb
                  else args.emb_size),
        embeddings=(TRG.vocab.vectors
                    if args.pretrained_emb
                    else None),
        max_norm=args.emb_maxnorm,
        padding_idx=TRG.vocab.stoi['<pad>'],
        hidden_size=args.hidden_size,
        num_layers=args.num_layers,
        dropout=args.dropout,
        bidirectional=False # args.bidirectional
    )
    model = models.Seq2Seq(enc, dec, use_cuda=use_cuda)
    if use_cuda:
        model.cuda()
    print(model)

    # Intialize loss
    criterion = torch.nn.CrossEntropyLoss(
        ignore_index=TRG.vocab.stoi["<pad>"])

    # Create optimizer
    if args.optimizer == 'Adam':
        optim = torch.optim.Adam
    elif args.optimizer == 'Adadelta':
        optim = torch.optim.Adadelta
    elif args.optimizer == 'Adagrad':
        optim = torch.optim.Adagrad
    else:
        optim = torch.optim.SGD
    optimizer = optim(model.parameters(), lr=args.lr)

    # Create scheduler
    lambda_lr = lambda epoch: 0.5 if epoch > 8 else 1
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_lr)

    # Train
    best_val_loss = None
    fname = './{}/{}.pt'.format(SAVE_DIR, args.save)

    print('=' * 89)
    try:
        for epoch in range(1, args.epochs+1):
            epoch_start_time = time.time()

            attns = train(epoch, model, train_iter, criterion, optimizer,
                  use_cuda, args, SRC, TRG)
            val_loss = evaluate(model, val_iter, criterion, use_cuda)

            # Log results
            print('-' * 89)
            print('| end of epoch {:3d} | time: {:5.2f}s '
                  '| valid loss {:5.2f} | valid ppl {:8.2f}'.format(
                      epoch, (time.time() - epoch_start_time),
                      val_loss, math.exp(val_loss)))
            print('-' * 89)

            # Save the model if validation loss is best we've seen so far
            if not best_val_loss or val_loss < best_val_loss:
                if not os.path.isdir(SAVE_DIR):
                    os.makedirs(SAVE_DIR)
                torch.save(model, fname)
                best_val_loss = val_loss

            # Anneal learning rate
            scheduler.step()
    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early')

    # Load the best saved model
    with open(fname, 'rb') as f:
        model = torch.load(f)

    # Run on test data
    test_loss = evaluate(model, test_iter, criterion, use_cuda)

    # Log results
    print('=' * 89)
    print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
        test_loss, math.exp(test_loss)))
    print('=' * 89)
Example #9
0

if __name__ == '__main__':
    #hyper-parameters
    # #other parameters can be found in configs.py, but better to keep default
    use_model = False     #True:use the trained model, else training from scratch
    hidden_size = 256    #rnn's hidden_size
    in_embed_dim = 256   #input language word embedding dimension
    out_embed_dim = 256  #output language word embedding dimension
    lr = 0.01
    n_iters = 80000
    print_every = 1000
    plot_every = 100
    
    
    encoder1 = models.EncoderRNN(input_lang.n_words, hidden_size, in_embed_dim).to(device)
    attn_decoder1 = models.AttnDecoderRNN(hidden_size, output_lang.n_words, out_embed_dim, dropout_p=0.1).to(device)
    
    if use_model:
        encoder1.load_state_dict(torch.load('data/encoder_25.pt'))
        attn_decoder1.load_state_dict(torch.load('data/attn_decoder_25.pt'))
    else:
        trainIters(pairs, input_lang, output_lang, encoder1, attn_decoder1, n_iters=n_iters, print_every=print_every, plot_every=plot_every, learning_rate=lr)
    
    evaluateRandomly(pairs, input_lang, output_lang, encoder1, attn_decoder1)
    
    evaluateInput(input_lang, output_lang, encoder1, attn_decoder1)
    
    
    
    
Example #10
0
if __name__ == '__main__':

    # 4 tense into pairs
    preData(params.PRE_YET)

    # open file to store
    file_loss = open('./%d/loss.txt' % params.NUM, 'w', encoding='UTF-8')
    file_KL = open('./%d/KL.txt' % params.NUM, 'w', encoding='UTF-8')
    file_bleu = open('./%d/bleu.txt' % params.NUM, 'w', encoding='UTF-8')
    file_bleuTest1 = open('./%d/bleuTest1.txt' % params.NUM,
                          'w',
                          encoding='UTF-8')

    # train
    encoder = models.EncoderRNN().cuda()
    decoder = models.DecoderRNN().cuda()
    encoder_optimizer = optim.Adam(encoder.parameters(), lr=params.LR)
    decoder_optimizer = optim.Adam(decoder.parameters(), lr=params.LR)

    cond_embed = nn.Embedding(4, params.COND_EMBEDDING_SIZE).cuda()
    cond_embed_optimizer = optim.Adam(cond_embed.parameters(), lr=params.LR)

    for epoch_i in range(1, params.EPOCH + 1):
        print('\n#####Start epoch %d#####' % epoch_i,
              time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
        print('Training...')

        # load data
        train_data = tenseLoader('train')
        train_len = train_data.len()