# model = models.ResNetSR(scale).create_model() # plot_model(model, to_file="architectures/ResNet.png", show_layer_names=True, show_shapes=True) # model = models.GANImageSuperResolutionModel(scale).create_model(mode='train') # plot_model(model, to_file='architectures/GAN Image SR.png', show_shapes=True, show_layer_names=True) # model = models.DistilledResNetSR(scale).create_model() # plot_model(model, to_file='architectures/distilled_resnet_sr.png', show_layer_names=True, show_shapes=True) # model = models.NonLocalResNetSR(scale).create_model() # plot_model(model, to_file='architectures/non_local_resnet_sr.png', show_layer_names=True, show_shapes=True) """ Train Super Resolution """ sr = models.ImageSuperResolutionModel(scale) sr.create_model() sr.fit(nb_epochs=10, save_history=False) #kpl from 250 """ Train ExpantionSuperResolution """ # esr = models.ExpantionSuperResolution(scale) # esr.create_model() # esr.fit(nb_epochs=250) """ Train DenoisingAutoEncoderSR """ # dsr = models.DenoisingAutoEncoderSR(scale) # dsr.create_model()
from __future__ import print_function, division from keras.utils.vis_utils import plot_model import models import img_utils if __name__ == "__main__": path = r"headline_carspeed.jpg" val_path = "val_images/" scale = 4 """ Plot the models """ model = models.ImageSuperResolutionModel(scale).create_model() plot_model(model, to_file="architectures/SRCNN.png", show_shapes=True, show_layer_names=True) # model = models.ExpantionSuperResolution(scale).create_model() # plot_model(model, to_file="architectures/ESRCNN.png", show_layer_names=True, show_shapes=True) # model = models.DenoisingAutoEncoderSR(scale).create_model() # plot_model(model, to_file="architectures/Denoise.png", show_layer_names=True, show_shapes=True) # model = models.DeepDenoiseSR(scale).create_model() # plot_model(model, to_file="architectures/Deep Denoise.png", show_layer_names=True, show_shapes=True) # model = models.ResNetSR(scale).create_model()
'"ddsr" or "rnsr"' mode = str(args.mode).lower() assert mode in ['fast', 'patch'], 'Mode of operation must be either "fast" or "patch"' scale_factor = int(args.scale) save = strToBool(args.save) patch_size = int(args.patch_size) assert patch_size > 0, "Patch size must be a positive integer" customWeightsPath = args.weightsPath if model_type == "sr": model = models.ImageSuperResolutionModel(scale_factor, customWeightsPath) elif model_type == "esr": model = models.ExpantionSuperResolution(scale_factor) elif model_type == "dsr": model = models.DenoisingAutoEncoderSR(scale_factor) elif model_type == "ddsr": model = models.DeepDenoiseSR(scale_factor) elif model_type == "rnsr": model = models.ResNetSR(scale_factor) else: model = models.DeepDenoiseSR(scale_factor) model.upscale(path, save_intermediate=save, mode=mode, patch_size=patch_size,
model_type = str(args.model).lower() assert model_type in ["sr", "esr", "dsr", "ddsr", "rnsr"], 'Model type must be either "sr", "esr", "dsr", ' \ '"ddsr" or "rnsr"' mode = str(args.mode).lower() assert mode in ['fast', 'patch'], 'Mode of operation must be either "fast" or "patch"' scale_factor = int(args.scale) save = strToBool(args.save) patch_size = int(args.patch_size) assert patch_size > 0, "Patch size must be a positive integer" if model_type == "sr": model = models.ImageSuperResolutionModel(scale_factor) elif model_type == "esr": model = models.ExpantionSuperResolution(scale_factor) elif model_type == "dsr": model = models.DenoisingAutoEncoderSR(scale_factor) elif model_type == "ddsr": model = models.DeepDenoiseSR(scale_factor) elif model_type == "rnsr": model = models.ResNetSR(scale_factor) else: model = models.DeepDenoiseSR(scale_factor) model.upscale(path, save_intermediate=save, mode=mode, patch_size=patch_size,
args = parser.parse_args() path = args.imgpath suffix = args.suffix model_type = str(args.model).lower() assert model_type in ["sr", "esr", "dsr", "ddsr", "rnsr"], 'Model type must be either "sr", "esr", "dsr", ' \ '"ddsr" or "rnsr"' mode = str(args.mode).lower() assert mode in ['fast', 'patch'], 'Mode of operation must be either "fast" or "patch"' scale_factor = int(args.scale) save = strToBool(args.save) patch_size = int(args.patch_size) assert patch_size > 0, "Patch size must be a positive integer" if model_type == "sr": model = models.ImageSuperResolutionModel() elif model_type == "esr": model = models.ExpantionSuperResolution() elif model_type == "dsr": model = models.DenoisingAutoEncoderSR() elif model_type == "ddsr": model = models.DeepDenoiseSR() elif model_type == "rnsr": model = models.ResNetSR() model.upscale(path, scale_factor=scale_factor, save_intermediate=save, evaluate=False, mode=mode, patch_size=patch_size, suffix=suffix)