def train(_): if config.mode == "sep": if config.use_content: model = models.SSSynth_Content() else: model = models.SSSynth() elif config.mode == "mask": model = models.MaskSep() elif config.mode == "chain": model = models.Chain() model.train()
def eval_wav_folder(folder_name): if config.mode == "sep": if config.use_content: model = models.SSSynth_Content() else: model = models.SSSynth() elif config.mode == "mask": model = models.MaskSep() model.test_folder_wav(folder_name)
def eval_wav_file(file_name, acap_file=None): if config.mode == "sep": if config.use_content: model = models.SSSynth_Content() else: model = models.SSSynth() elif config.mode == "mask": model = models.MaskSep() elif config.mode == "chain": model = models.Chain() model.test_file_wav(file_name, acap_file)
def eval_hdf5_file(file_name, speaker_alt=None): if config.mode == "voc" or config.mode == "ori": model = models.AutoVC() elif config.mode == "stft_voc": model = models.AutoVCSTFT() if config.mode == "voc" or config.mode == "ori" or config.mode == "stft_voc": speaker_name = file_name.split('_')[1] speaker_index = config.singers.index(speaker_name) if not speaker_alt: model.test_file_hdf5(file_name, speaker_index, speaker_index) else: model.test_file_hdf5(file_name, speaker_index, speaker_alt) elif config.mode == "sep": if config.use_content: model = models.SSSynth_Content() model.test_file_hdf5(file_name) else: model = models.SSSynth() model.test_file_hdf5(file_name) elif config.mode == "npss": model = models.NPSS() model.test_file_hdf5(file_name)
def train(_): model = models.SSSynth() model.train()
def eval_hdf5_file(file_name): model = models.SSSynth() model.test_file_hdf5(file_name)
def test(_): model = models.SSSynth() model.test_model_yam()