Example #1
0
def main():
    import sys
    import pathlib

    __dir__ = pathlib.Path(os.path.abspath(__file__))
    sys.path.append(str(__dir__))
    sys.path.append(str(__dir__.parent.parent))

    from models import build_model, build_loss
    from data_loader import get_dataloader
    from utils import Trainer
    from utils import get_post_processing
    from utils import get_metric

    config = anyconfig.load(open('config.yaml', 'rb'))
    train_loader = get_dataloader(config['dataset']['train'])
    validate_loader = get_dataloader(config['dataset']['validate'])
    criterion = build_loss(config['loss']).cuda()
    model = build_model(config['arch'])
    post_p = get_post_processing(config['post_processing'])
    metric = get_metric(config['metric'])

    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      post_process=post_p,
                      metric_cls=metric,
                      validate_loader=validate_loader)
    trainer.train()
Example #2
0
def main_entrance():
    os.environ["CUDA_VISIBLE_DEVICES"] = '3'
    args = init_args()
    config = anyconfig.load(open(args.config_file, 'rb'))
    # print('===config:', config)
    if 'base' in config:
        config = parse_config(config)
    print('===config:', config)
    if torch.cuda.device_count() > 1:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl", init_method="env://", world_size=torch.cuda.device_count(),
                                             rank=args.local_rank)
        config['distributed'] = True
    else:
        config['distributed'] = False
    config['local_rank'] = args.local_rank
    logging.info(config['dataset']['train'])
    model = build_model(config['arch']['type'], **config['arch'])

    criterion = build_loss(config['loss'].pop('type'), **config['loss']).cuda()
    post_process = get_post_processing(config['post_processing'])
    train_loader = get_trainloader(dataset.ICDAR2015Dataset, config)
    eval_loader = get_evalloader(dataset.ICDAR2015Dataset, config)

    model = model.cuda()
    if config['distributed']:
        model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                    output_device=args.local_rank, broadcast_buffers=False,
                                                    find_unused_parameters=True)
    checkpoint_path = config['train']['resume_checkpoint']
    output_path = config['train']['output_path']
    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.00005)
    # load_weights(model, optimizer, config['distributed'], checkpoint_path='/red_detection/DBNet/code_pretrain_model/model_latest_express_code_7_13.pth')
    # load_weights(model, optimizer, config['distributed'], checkpoint_path=checkpoint_path)

    epochs = config['train']['epochs']
    warmup_iters = config['lr_scheduler']['args']['warmup_epoch']*len(train_loader)
    # scheduler = WarmupPolyLR(optimizer, max_iters=epochs * len(train_loader),
    #                          warmup_iters=warmup_iters, **config['lr_scheduler']['args'])

    train(model, optimizer, epochs, criterion, train_loader, config, post_process, eval_loader,output_path)

    from matplotlib import pyplot as plt

    plt.plot(lr_list)
    plt.savefig('./show_lr_word_industry.png')
Example #3
0
def main(config):
    import torch
    from models import build_model, build_loss
    from data_loader import get_dataloader
    from trainer import Trainer
    from post_processing import get_post_processing
    from utils import get_metric
    if torch.cuda.device_count() > 1:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(
            backend="nccl",
            init_method="env://",
            world_size=torch.cuda.device_count(),
            rank=args.local_rank)
        config['distributed'] = True
    else:
        config['distributed'] = False
    config['local_rank'] = args.local_rank

    train_loader = get_dataloader(config['dataset']['train'],
                                  config['distributed'])
    assert train_loader is not None
    if 'validate' in config['dataset']:
        validate_loader = get_dataloader(config['dataset']['validate'], False)
    else:
        validate_loader = None

    criterion = build_loss(config['loss'].pop('type'), **config['loss']).cuda()

    config['arch']['backbone']['in_channels'] = 3 if config['dataset'][
        'train']['dataset']['args']['img_mode'] != 'GRAY' else 1
    config['arch']['backbone']['pretrained'] = False
    model = build_model(config['arch']['type'], **config['arch'])

    post_p = get_post_processing(config['post_processing'])
    metric = get_metric(config['metric'])

    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      post_process=post_p,
                      metric_cls=metric,
                      validate_loader=validate_loader)
    trainer.train()
Example #4
0
import tensorflow as tf
import signal

from utils import *
import models

inputs, keep_prob, result = models.build_model()
labels = tf.placeholder(dtype=tf.float32, shape=[None], name="labels")

loss = models.build_loss(labels=labels, result=result, regularizer_weight=config.REGULARIZER_WEIGHT,
                         regularized_vars=tf.trainable_variables())

training_step = tf.Variable(0, trainable=False, name="training_step")
train = tf.train.AdamOptimizer(1e-5).minimize(loss, global_step=training_step)

dataset = load_training_data(config.BATCH_SIZE)

tf.summary.scalar("loss", loss)
summary_op = tf.summary.merge_all()

exit_signal = False


def exit_handler(*args):
    exit_signal = True


signal.signal(signal.SIGINT, exit_handler)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
Example #5
0
def main(config):
    import torch
    from models import build_model, build_loss
    from data_loader import get_dataloader
    from trainer import Trainer
    from post_processing import get_post_processing
    from utils import get_metric
    from utils import setup_logger
    if torch.cuda.device_count() > 1:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(
            backend="nccl",
            init_method="env://",
            world_size=torch.cuda.device_count(),
            rank=args.local_rank)
        config['distributed'] = True
    else:
        config['distributed'] = False
    config['local_rank'] = args.local_rank

    config['arch']['backbone']['in_channels'] = 3 if config['dataset'][
        'train']['dataset']['args']['img_mode'] != 'GRAY' else 1
    model = build_model(config['arch'])

    if config['local_rank'] == 0:
        save_dir = os.path.join(config['trainer']['output_dir'],
                                config['name'] + '_' + model.name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        logger = setup_logger(os.path.join(save_dir, 'train.log'))

    if 'evolve' in config.keys(
    ) and config['evolve']['flag'] and not config['distributed']:
        meta = {
            'optimizer.args.lr':
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lr_scheduler.args.warmup_epoch': (1, 0, 5),
            'loss.alpha': (1, 0.5, 3),
            'loss.beta': (2, 5, 20),
            'loss.ohem_ratio': (1, 1, 5),
            'post_processing.args.box_thresh': (0.3, 0.4, 1.0),
            'dataset.train.dataset.args.pre_processes.[1].args.min_crop_side_ratio':
            (1, 0.1, 0.9),
            'dataset.train.dataset.args.pre_processes.[2].args.thresh_max':
            (0.3, 0.4, 1.0),
        }  # image mixup (probability)
        config['notest'] = True
        config['nosave'] = True
        saved_path = os.path.join(config['trainer']['output_dir'],
                                  config['name'] + '_' + model.name)
        if not os.path.exists(os.path.join(saved_path, 'evolve')):
            os.makedirs(os.path.join(saved_path, 'evolve'))
        yaml_file = os.path.join(saved_path, 'evolve', 'hyp_evolved.yaml')
        evolve_file = os.path.join(saved_path, 'evolve', 'evolve.txt')
        for _ in range(300):
            if os.path.exists(evolve_file):
                parent = 'single'
                x = np.loadtxt(evolve_file, ndmin=2)
                n = min(5, len(x))
                x = x[np.argsort(-fitness(x))][:n]
                w = fitness(x) - fitness(x).min()
                if len(x) == 1:
                    x = x[0]
                elif parent == 'single':
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                    # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                # for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                #     hyp[k] = float(x[i + 7] * v[i])  # mutate
                for i, k in enumerate(meta.keys()):
                    config_keys = k.split('.')
                    str_config = 'config'
                    for config_key in config_keys:
                        if config_key.startswith('[') and config_key.endswith(
                                ']'):
                            str_config = str_config + config_key
                        else:
                            str_config = str_config + '[\'' + config_key + '\']'
                    exec(str_config + '=x[i]*v[i]')

            meta_value = []
            for k, v in meta.items():
                config_keys = k.split('.')
                str_config = 'config'
                for config_key in config_keys:
                    if config_key.startswith('[') and config_key.endswith(']'):
                        str_config = str_config + config_key
                    else:
                        str_config = str_config + '[\'' + config_key + '\']'
                # str_config = 'config[\'' + '\'][\''.join(k.split('.')) + '\']'
                exec('print(' + str_config + ')')
                exec(str_config + '=max(' + str_config + ', v[1])')
                exec(str_config + ' = min(' + str_config + ', v[2])')
                exec(str_config + ' = round(' + str_config + ', 5)')
                exec('meta_value.append(' + str_config + ')')
                # hyp[k] = max(hyp[k], v[1])  # lower limit
                # hyp[k] = min(hyp[k], v[2])  # upper limit
                # hyp[k] = round(hyp[k], 5)  # significant digits

            train_loader = get_dataloader(config['dataset']['train'],
                                          config['distributed'])
            assert train_loader is not None
            if 'validate' in config['dataset']:
                validate_loader = get_dataloader(config['dataset']['validate'],
                                                 False)
            else:
                validate_loader = None

            criterion = build_loss(config['loss']).cuda()

            post_p = get_post_processing(config['post_processing'])
            metric = get_metric(config['metric'])

            trainer = Trainer(
                config=config,
                model=model,
                criterion=criterion,
                train_loader=train_loader,
                post_process=post_p,
                metric_cls=metric,
                validate_loader=validate_loader,
                logger=(logger if config['local_rank'] == 0 else None))
            results = trainer.train()

            print_mutation(results, yaml_file, evolve_file, meta_value)

    else:
        train_loader = get_dataloader(config['dataset']['train'],
                                      config['distributed'])
        assert train_loader is not None
        if 'validate' in config['dataset']:
            validate_loader = get_dataloader(config['dataset']['validate'],
                                             False)
        else:
            validate_loader = None

        criterion = build_loss(config['loss']).cuda()

        post_p = get_post_processing(config['post_processing'])
        metric = get_metric(config['metric'])

        trainer = Trainer(
            config=config,
            model=model,
            criterion=criterion,
            train_loader=train_loader,
            post_process=post_p,
            metric_cls=metric,
            validate_loader=validate_loader,
            logger=(logger if config['local_rank'] == 0 else None))
        trainer.train()