def get_model(): print('[+] loading model... ', end='', flush=True) model = models.densenet201_finetune(num_classes=NB_CLASSES, drop_rate=0.20) if use_gpu: model.cuda() print('done') return model
def get_model(): print('[+] loading model... ', end='', flush=True) model = models.densenet201_finetune(NB_CLASSES) if use_gpu: model.cuda() print('done') return model
def get_model(name): print('[+] loading model... ', end='', flush=True) if name == 'densenet201': model = models.densenet201_finetune(NB_CLASSES) elif name == 'inceptionresnetv2': model = models.inceptionresnetv2_finetune(NB_CLASSES) if name == 'senet154': model = models.senet154_finetune(NB_CLASSES) if name == 'nasnetlarge': model = models.nasnetlarge_finetune(NB_CLASSES) if name == 'inceptionv4': model = models.inceptionv4_finetune(NB_CLASSES) if name == 'se_resnext101_32x4d': model = models.se_resnext101_32x4d_finetune(NB_CLASSES) if use_gpu: model.cuda() print('done') return model
def get_model(model_name): print('Loading model: %s' % (model_name)) if model_name.startswith("densenet"): model = models.densenet201_finetune(NB_CLASSES) elif model_name.startswith("squeezenet"): model = models.squeezenet11_finetune(NB_CLASSES) elif model_name.startswith("resnet"): model = models.resnet152_finetune(NB_CLASSES) else: print("Error: Model not found!") exit(-1) # Multi-GPU scaling if torch.cuda.device_count() > 1: print("Parallelizing model over %d GPUs!" % (torch.cuda.device_count())) model = nn.DataParallel(model) model.to(device) print('Model loaded successfully!') return model