Example #1
0
def train():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE,
                                                 NUM_EPOCHS)
        iterator = data_loader.load_data(TRAIN_TFR_PATH, True)
        with tf.Session(graph=g) as sess:
            frameNo, image, label = iterator.get_next()

            # VGG FACE network
            VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
            image_batch = reshape_to_cnn(image)
            VGGFace_network.setup(image_batch, trainable=False)
            face_output = VGGFace_network.get_face_fc0()

            # RNN part
            rnn_in = reshape_to_rnn(face_output)
            prediction = models.get_prediction_highway(rnn_in,
                                                       useHighway=False)
            prediction = tf.reshape(prediction,
                                    [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

            # compute losses using slim
            compute_loss(prediction, label_batch)

            total_loss = slim.losses.get_total_loss()
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE)

            # restore VGG-FACE model at the beginning
            restore_names = VGGFace_network.get_restore_vars()
            variables_to_restore = tf.contrib.framework.get_variables_to_restore(
                include=restore_names)
            init_fn = slim.assign_from_checkpoint_fn(VGG_RESTORE_PATH,
                                                     variables_to_restore,
                                                     ignore_missing_vars=False)

            # summarize_gradients : Whether or not add summaries for each gradient.
            # variables_to_train: an optional list of variables to train. If None, it will default to all tf.trainable_variables().
            train_op = slim.learning.create_train_op(
                total_loss,
                optimizer,
                summarize_gradients=
                True  #  Whether or not add summaries for each gradient.
            )
            loggingTF.set_verbosity(1)
            # keep 10000 ckpts
            saver = tf.train.Saver(max_to_keep=10000)
            # including initialize local and global variables

            slim.learning.train(
                train_op,
                TRAIN_DIR,
                init_fn=init_fn,
                save_summaries_secs=60 *
                15,  # How often, in seconds, to save summaries.
                log_every_n_steps=
                500,  # The frequency, in terms of global steps, that the loss and global step are logged.
                save_interval_secs=60 *
                15,  # How often, in seconds, to save the model to `logdir`.
                saver=saver)
def evaluate():
    g = tf.Graph()
    with g.as_default():
        # load data get iterator
        data_loader = data_utils_mean.DataLoader(SEQUENCE_LENGTH, BATCH_SIZE, NUM_EPOCHS)
        iterator = data_loader.load_data(TEST_TFR_PATH, False)
        frameNo, image, label = iterator.get_next()
        # define model graph
        # VGG FACE network
        VGGFace_network = vgg_face.VGGFace(SEQUENCE_LENGTH * BATCH_SIZE)
        image_batch = tf.reshape(image, [-1, 96, 96, 3])
        VGGFace_network.setup(image_batch, trainable=False)  # image_batch is a tensor of shape (batch_size*seq_length,image_dim,image_dim,3)
        face_output = VGGFace_network.get_face_fc0()
        # RNN part
        rnn_in = reshape_to_rnn(face_output)
        prediction = models.get_prediction_highway(rnn_in, useHighway=False)
        prediction = tf.reshape(prediction, [BATCH_SIZE, SEQUENCE_LENGTH, 2])
        label_batch = tf.reshape(label, [BATCH_SIZE, SEQUENCE_LENGTH, 2])

        # Computing MSE and Concordance values, and adding them to summary
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'eval/mse_valence': slim.metrics.streaming_mean_squared_error(prediction[:, :, 0], label_batch[:, :, 0]),
            'eval/mse_arousal': slim.metrics.streaming_mean_squared_error(prediction[:, :, 1], label_batch[:, :, 1]),
        })

        summary_ops = []
        conc_total = 0
        mse_total = 0
        for i, name in enumerate(['valence', 'arousal']):
            with tf.name_scope(name) as scope:
                concordance_cc2, values, updates = metrics.concordance_cc2(
                    tf.reshape(prediction[:, :, i], [-1]),
                    tf.reshape(label_batch[:, :, i], [-1]))
                for n, v in updates.items():
                    names_to_updates[n + '/' + name] = v
            op = tf.summary.scalar('eval/concordance_' + name, concordance_cc2)
            op = tf.Print(op, [concordance_cc2], 'eval/concordance_' + name)
            summary_ops.append(op)

            mse_eval = 'eval/mse_' + name
            op = tf.summary.scalar(mse_eval, names_to_values[mse_eval])
            op = tf.Print(op, [names_to_values[mse_eval]], mse_eval)
            summary_ops.append(op)

            mse_total += names_to_values[mse_eval]
            conc_total += concordance_cc2
        conc_total = conc_total / 2
        mse_total = mse_total / 2

        op = tf.summary.scalar('eval/concordance_total', conc_total)
        op = tf.Print(op, [conc_total], 'eval/concordance_total')
        summary_ops.append(op)

        op = tf.summary.scalar('eval/mse_total', mse_total)
        op = tf.Print(op, [mse_total], 'eval/mse_total')
        summary_ops.append(op)

        num_batches = int(NUM_BATCHES)
        loggingTF.set_verbosity(1)
        if not os.path.exists(SUMMARY_PATH):
            os.makedirs(SUMMARY_PATH)
        # always check latest ckpt and wait for next.
        slim.evaluation.evaluate_once('',
                                      MODEL_PATH,
                                      SUMMARY_PATH,
                                      num_evals=num_batches,
                                      eval_op=list(names_to_updates.values()),
                                      summary_op=tf.summary.merge(summary_ops),
                                      )