Example #1
0
def plot_p():
    with open('../../data/split/Seq2_Sus', 'r') as f:
        old_sequence = f.read()[10:].replace('\n', '').lower()
    seq = models.Sequence(old_sequence)
    codon_freq = codon_frequencies.F1x4(seq)
    q = models.goldman_Q(codon_freq=codon_freq)
    models.plot_p_over_time(q, t=0.1, codon='aaa', logscale=False)
    q = models.goldman_Q()
    models.plot_p_over_time(q, t=0.1, codon='aaa', logscale=False)
Example #2
0
def plot_p():
    with open('../../data/split/Seq2_Sus', 'r') as f:
        old_sequence = f.read()[10:].replace('\n', '').lower()
    seq = models.Sequence(old_sequence)
    codon_freq = codon_frequencies.F1x4(seq)
    q = models.goldman_Q(codon_freq=codon_freq)
    models.plot_p_over_time(q, t=0.1, codon='aaa', logscale=False)
    q = models.goldman_Q()
    models.plot_p_over_time(q, t=0.1, codon='aaa', logscale=False)
Example #3
0
 def test_convert_q_to_p(self):
     q = models.goldman_Q()
     p = models.convert_q_to_p(q, t=0)
     self.assertEqual(p.shape, (61, 61))
     self.assertTrue((p==identity(61)).all())
     p = models.convert_q_to_p(q, t=1)
     self.assertTrue((p.max() <= 1.0))
Example #4
0
    def test_evolve_sequence_with_q(self):
        q = models.goldman_Q(scale_q=True)
        new_sequence0 = evolve.evolve_sequence_with_q(models.Sequence(self.old_sequence), q, t=1)
        new_sequence1 = evolve.evolve_sequence_with_q(models.Sequence(self.old_sequence), q, t=1)
        new_seq0 = new_sequence0.seq
        new_seq1 = new_sequence1.seq

        self.assertNotEqual(self.old_sequence, new_seq0) # this has a very low probability of failing
        self.assertNotEqual(self.old_sequence, new_seq1) # this has a very low probability of failing
        self.assertNotEqual(new_seq0, new_seq1)
Example #5
0
 def test_make_sub_from_p(self):
     q = models.goldman_Q(scale_q=False)
     p = models.convert_q_to_p(q, t=10)
     p_cumsum, p_codons, p_cumsum_dict = models.get_cumulative_p(p, return_dict=True)
     old_codon_seq = 'aaa'
     old_codon = models.Codon(seq=old_codon_seq)
     models.make_sub_from_p(old_codon, p_cumsum_dict)
     self.assertEqual(len(old_codon.seq), 3)
     allowed_letters = 'atgc'
     for i in old_codon.seq:
         self.assertIn(i, allowed_letters)
Example #6
0
 def test_make_subs_in_locus(self):
     q = models.goldman_Q(scale_q=False)
     p = models.convert_q_to_p(q, t=10)
     p_cumsum, p_codons, p_cumsum_dict = models.get_cumulative_p(p, return_dict=True)
     old_codon_seq = 'aaa'
     old_codons = [models.Codon(seq=old_codon_seq)]*2
     locus = models.Locus(codons=old_codons)
     old_seq = locus.sequence
     while locus.sequence == old_seq:
         models.make_subs_in_locus(locus, p_cumsum_dict)
     self.assertNotEqual(locus.history, [])
Example #7
0
def evolve_tree(sequence,
                taxa=10,
                t=1e-2,
                omega=1.0,
                kappa=2.0,
                lmbda=1e-5,
                ti_td=0.1,
                codon_freq='F1x4',
                scale_q=True,
                **kwargs):
    """
    Evolve a parent DNA sequence into a set of daughter sequences (taxa) by:
        1. generating a random phylogenetic tree
        2. intantiating a mutational model (e.g. Goldman-Yang-like by default) represented by Q-matrix, with indels
        3. mutate sequence according to tree shape using model 

    Args:
        sequence: a model.Sequence instance
        taxa: number of daughter sequences to evolve
        t: evolution time or branch length
        omega: dN/dS 
        kappa: ratio of transition to transversion rates
        lmbda: probability of indel at codon
        ti_td: ratio of insertions to deletions
        codon_freq: codon frequency model, also know as equilibrium frequencies (default is F1x4)
        scale_q: scales Q so that the average rate of substitution at
        equilibrium equals 1. Branch lengths are thus expected number of nucleotide
        substitutions per codon. See Goldman (1994).

    Returns:
        tree instance populated with new sequence strings
    """

    codon_freq = getattr(codon_frequencies, codon_freq)(sequence)

    q = models.goldman_Q(kappa=kappa,
                         omega=omega,
                         codon_freq=codon_freq,
                         scale_q=scale_q,
                         return_dict=False)

    tree = trees.random_tree(taxa)
    tree.value = sequence
    for node in trees.get_list_of_tree_nodes(tree)[1:]:
        node.value = evolve_sequence_with_q(node.parent.value,
                                            q,
                                            t=t,
                                            lmbda=lmbda,
                                            ti_td=ti_td)
    return tree
Example #8
0
def evolve_tree(sequence,
                taxa=10,
                t=1e-2,
                omega=1.0, 
                kappa=2.0, 
                lmbda=1e-5,
                ti_td=0.1,
                codon_freq='F1x4', 
                scale_q=True, 
                **kwargs
                ):

    """
    Evolve a parent DNA sequence into a set of daughter sequences (taxa) by:
        1. generating a random phylogenetic tree
        2. intantiating a mutational model (e.g. Goldman-Yang-like by default) represented by Q-matrix, with indels
        3. mutate sequence according to tree shape using model 

    Args:
        sequence: a model.Sequence instance
        taxa: number of daughter sequences to evolve
        t: evolution time or branch length
        omega: dN/dS 
        kappa: ratio of transition to transversion rates
        lmbda: probability of indel at codon
        ti_td: ratio of insertions to deletions
        codon_freq: codon frequency model, also know as equilibrium frequencies (default is F1x4)
        scale_q: scales Q so that the average rate of substitution at
        equilibrium equals 1. Branch lengths are thus expected number of nucleotide
        substitutions per codon. See Goldman (1994).

    Returns:
        tree instance populated with new sequence strings
    """

    codon_freq = getattr(codon_frequencies, codon_freq)(sequence)

    q = models.goldman_Q(kappa=kappa, omega=omega, codon_freq=codon_freq, scale_q=scale_q, return_dict=False)
   
    tree = trees.random_tree(taxa)
    tree.value = sequence
    for node in trees.get_list_of_tree_nodes(tree)[1:]:
        node.value = evolve_sequence_with_q(node.parent.value, q, t=t, lmbda=lmbda, ti_td=ti_td)
    return tree 
Example #9
0
    def test_evolve_sequence_with_q(self):
        q = models.goldman_Q(scale_q=True)
        new_sequence0 = evolve.evolve_sequence_with_q(models.Sequence(
            self.old_sequence),
                                                      q,
                                                      t=1)
        new_sequence1 = evolve.evolve_sequence_with_q(models.Sequence(
            self.old_sequence),
                                                      q,
                                                      t=1)
        new_seq0 = new_sequence0.seq
        new_seq1 = new_sequence1.seq

        self.assertNotEqual(
            self.old_sequence,
            new_seq0)  # this has a very low probability of failing
        self.assertNotEqual(
            self.old_sequence,
            new_seq1)  # this has a very low probability of failing
        self.assertNotEqual(new_seq0, new_seq1)
Example #10
0
 def test_sample_model_mutation_probabilities_validation(self):
     q = models.goldman_Q(scale_q=False)
     sample = models.sample_model_mutation_probabilities('aaa', q)
     self.assertIsInstance(sample, list)
     self.assertEqual(len(sample), 100) 
Example #11
0
 def test_get_mutation_from_cumulative_p(self):
     q = models.goldman_Q(scale_q=False)
     p = models.convert_q_to_p(q, t=10)
     pc, pcod, pcdict = models.get_cumulative_p(p, return_dict=True)
     old_codon = 'aaa'
     new_codon = models.get_mutation_from_cumulative_p(old_codon, pcdict)
Example #12
0
 def test_get_cumulative_p(self):
     q = models.goldman_Q(scale_q=False)
     p = models.convert_q_to_p(q, t=10)
     pc, pcod = models.get_cumulative_p(p)
     for i in pc:
         self.assertTrue(isclose(i[-1], 1))
Example #13
0
 def test_goldman_Q(self):
     cf = codon_frequencies.FEqual()
     q, qdict = models.goldman_Q(codon_freq=cf, scale_q=False, return_dict=True)
     self.assertEqual(q.shape, (61, 61))
     for row in q:
         self.assertTrue(isclose(row.sum(), 0))