Example #1
0
def get_model(classifier_name,
              training_data,
              target_data,
              model_settings=None):
    """
    Function returns a trained model based on the csv file and features chosen.
    Creation and training of models has been separated into their own file:
    models.py

    Arguments:
        training_data:      the data the training is performed on
        target_data:        the targets for supervised learning
        model_settings:     dict of settings for the classifier

    Returns:
        model:              the trained model

    """

    model = ((models.linreg(training_data, target_data)) if
             (classifier_name == "linreg") else
             (models.svm(training_data, target_data, model_settings)) if
             (classifier_name == "svm") else
             (models.cart(training_data, target_data)) if
             (classifier_name == "cart") else
             (models.knn(training_data, target_data, model_settings)) if
             (classifier_name == "knn") else
             (models.lda(training_data, target_data, model_settings)) if
             (classifier_name == "lda") else
             (models.nb(training_data, target_data)) if
             (classifier_name == "nb") else
             (models.lr(training_data, target_data)) if
             (classifier_name == "lr") else None)

    return model
Example #2
0
def main(argv):
    param_fpath = sys.argv[1]
    # prepare training data
    X, y = get_train_data(param_fpath)  # X: feature list  y: label list

    # train
    print '\nBegin Running Logistic Regression...'
    lr_acc = lr(X, y)
    print "LR Accuracy: " + str(lr_acc)

    print '\nBegin Running KNN...'
    knn_acc = knn(X, y)
    print "KNN Accuracy: " + str(knn_acc)

    print '\nBegin Running GNB...'
    gnb_acc = gnb(X, y)
    print "GNB Accuracy: " + str(gnb_acc)

    print '\nBegin Running MNB...'
    mnb_acc = mnb(X, y)
    print "MNB Accuracy: " + str(mnb_acc)

    print '\nBegin Running BNB...'
    bnb_acc = bnb(X, y)
    print "BNB Accuracy: " + str(bnb_acc)

    print '\nBegin Running Decision Tree...'
    dtree_acc = dtree(X, y)
    print "Decision Tree Accuracy: " + str(dtree_acc)

    print '\nBegin Running SVM...'
    svm_acc = svm(X, y)
    print "SVM Accuracy: " + str(svm_acc)
def findPartitions():
	#main function to find optimal splits for opening/midgame/endgame
	global ENDGAME
	global MIDGAME
	global OPENING

	parser = Parser()
	print("PARSING")
	games = parser.read_uci(sys.argv[1])
	scored = parser.parseStockfish(games,sys.argv[2])

	validationgames = parser.read_uci(sys.argv[3])
	validationscored = parser.parseStockfish(validationgames,sys.argv[4])

	#Now I'm going to run KNN which is going to return y_
	training_labels_w = getLabels(scored,WHITE)
	training_labels_b = getLabels(scored,BLACK)

	validation_labels_w = getLabels(validationscored,WHITE)
	validation_labels_b = getLabels(validationscored,BLACK)

	minscore = 10000
	for i in range(10):
		for j in range(10-i):
			OPENING = float(i)/10
			MIDGAME = float(j)/10
			ENDGAME = float(10 - i - j)/10
			print(OPENING,MIDGAME,ENDGAME)
			training_features = set1(scored)
			validation_features = set1(validationscored)


			y_w = knn(training_features,training_labels_w,validation_features)
			y_b = knn(training_features,training_labels_b,validation_features)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i) + " " + str(j) + " " + str(10-i-j)
			if error_t < minscore:
				minscore = error_t
				print(st)
			o.write(st+"\n")
	o.close()
def main():
	#I guess this can be my main thing
	
	#parses into 2 groups, training data, validation data
	#PARSING TIME
	
	parser = Parser()
	print("PARSING")
	games = parser.read_uci(sys.argv[1])
	scored = parser.parseStockfish(games,sys.argv[2])

	validationgames = parser.read_uci(sys.argv[3])
	validationscored = parser.parseStockfish(validationgames,sys.argv[4])

	print("Building Features/Labels")
	#Now I'm going to run KNN which is going to return y_
	training_features = set2(scored)
	training_labels_w = getLabels(scored,WHITE)
	training_labels_b = getLabels(scored,BLACK)

	validation_features = set2(validationscored)
	validation_labels_w = getLabels(validationscored,WHITE)
	validation_labels_b = getLabels(validationscored,BLACK)

	print("Running LR")
	y_w = knn(training_features,training_labels_w,validation_features)
	y_b = knn(training_features,training_labels_b,validation_features)

	print("Calculating Error")
	error_w = meanError(validation_labels_w,y_w)
	error_b = meanError(validation_labels_b,y_b)
	error_t = (error_b+error_w)/2 #mean

	print(str(error_w) + " White error")
	print(str(error_b) + " Black error")
	print(str(error_t) + " Total error")
def runModels(testdata, testlabel):
    res = models.knn(testdata, testlabel)
    print("knn: ", res.mean())

    res = models.svm(testdata, testlabel)
    print("svm: ", res.mean())

    res = models.decisionTree(testdata, testlabel)
    print("decision tree: ", res.mean())

    res = models.naiveBayes(testdata, testlabel)
    print("Gaussian NB: ", res.mean())

    res = models.randomForest(testdata, testlabel)
    print("random forest: ", res.mean())

    res = models.nearestCentroid(testdata, testlabel)
    print("nearest centroid: ", res.mean())

    res = models.extraTree(testdata, testlabel)
    print("extra tree: ", res.mean())

    res = models.extraTrees(testdata, testlabel)
    print("extra trees: ", res.mean())
Example #6
0
import models
import visualize

# Find some interests through figure

visualize.plot0()
visualize.plot1()
visualize.plot2()
visualize.plot3()

# Start mining
models.init()
# Naive Bayes
models.bayes()
# K-nn model
models.knn()
# Decision tree
models.decision_tree()
# Random forest
models.random_forest()

print("\n")

models.compare()
# Random test
models.final_test()
def overnight():
	global OPENING
	global ENDGAME
	global MIDGAME
	costofthisprogrambecomingskynet = 999999999999999999999
	parser = Parser()
	games = parser.read_uci(sys.argv[1])
	scored = parser.parseStockfish(games,sys.argv[2])

	validationgames = parser.read_uci(sys.argv[3])
	validationscored = parser.parseStockfish(validationgames,sys.argv[4])

	training_features = set2(scored)
	training_labels_w = getLabels(scored,WHITE)
	training_labels_b = getLabels(scored,BLACK)

	validation_features = set2(validationscored)
	validation_labels_w = getLabels(validationscored,WHITE)
	validation_labels_b = getLabels(validationscored,BLACK)

	f = open("knnpartition","w")
	try:
		#opening/endgame/midgame for each model
		minscore = 10000
		for i in range(10):
			for j in range(10-i):
				OPENING = float(i)/10
				MIDGAME = float(j)/10
				ENDGAME = float(10 - i - j)/10
				print(OPENING,MIDGAME,ENDGAME)
				training_features = set2(scored)
				validation_features = set2(validationscored)


				y_w = knn(training_features,training_labels_w,validation_features)
				y_b = knn(training_features,training_labels_b,validation_features)


				error_w = meanError(validation_labels_w,y_w)
				error_b = meanError(validation_labels_b,y_b)
				error_t = (error_b+error_w)/2 #mean
				st = "Got score of " + str(error_t) + " with " + str(i) + " " + str(j) + " " + str(10-i-j)
				if error_t < minscore:
					minscore = error_t
					print(st)
				f.write(st+"\n")
		f.close()
	except:
		f.close()

	f = open("lrpartition","w")
	try:
		#opening/endgame/midgame for each model
		minscore = 10000
		for i in range(10):
			for j in range(10-i):
				OPENING = float(i)/10
				MIDGAME = float(j)/10
				ENDGAME = float(10 - i - j)/10
				print(OPENING,MIDGAME,ENDGAME)
				training_features = set2(scored)
				validation_features = set2(validationscored)


				y_w = lr(training_features,training_labels_w,validation_features)
				y_b = lr(training_features,training_labels_b,validation_features)


				error_w = meanError(validation_labels_w,y_w)
				error_b = meanError(validation_labels_b,y_b)
				error_t = (error_b+error_w)/2 #mean
				st = "Got score of " + str(error_t) + " with " + str(i) + " " + str(j) + " " + str(10-i-j)
				if error_t < minscore:
					minscore = error_t
					print(st)
				f.write(st+"\n")
		f.close()
	except:
		f.close()

	f = open("treepartition","w")
	try:
		#opening/endgame/midgame for each model
		minscore = 10000
		for i in range(10):
			for j in range(10-i):
				OPENING = float(i)/10
				MIDGAME = float(j)/10
				ENDGAME = float(10 - i - j)/10
				print(OPENING,MIDGAME,ENDGAME)
				training_features = set2(scored)
				validation_features = set2(validationscored)


				y_w = tree(training_features,training_labels_w,validation_features)
				y_b = tree(training_features,training_labels_b,validation_features)


				error_w = meanError(validation_labels_w,y_w)
				error_b = meanError(validation_labels_b,y_b)
				error_t = (error_b+error_w)/2 #mean
				st = "Got score of " + str(error_t) + " with " + str(i) + " " + str(j) + " " + str(10-i-j)
				if error_t < minscore:
					minscore = error_t
					print(st)
				f.write(st+"\n")
		f.close()
	except:
		f.close()

	f = open("forestpartition","w")
	try:
		#opening/endgame/midgame for each model
		minscore = 10000
		for i in range(10):
			for j in range(10-i):
				OPENING = float(i)/10
				MIDGAME = float(j)/10
				ENDGAME = float(10 - i - j)/10
				print(OPENING,MIDGAME,ENDGAME)
				training_features = set2(scored)
				validation_features = set2(validationscored)


				y_w = forest(training_features,training_labels_w,validation_features)
				y_b = forest(training_features,training_labels_b,validation_features)


				error_w = meanError(validation_labels_w,y_w)
				error_b = meanError(validation_labels_b,y_b)
				error_t = (error_b+error_w)/2 #mean
				st = "Got score of " + str(error_t) + " with " + str(i) + " " + str(j) + " " + str(10-i-j)
				if error_t < minscore:
					minscore = error_t
					print(st)
				f.write(st+"\n")
		f.close()
	except:
		f.close()


	OPENING = 0.4
	MIDGAME = 0.3
	ENDGAME = 0.3
	training_features = set2(scored)
	validation_features = set2(validationscored)

	f = open("knnoverfit","w")
	for i in range(100):
		try:
			y_w = knnO(training_features,training_labels_w,validation_features,i)
			y_b = knnO(training_features,training_labels_b,validation_features,i)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i)
			f.write(st+"\n")
		except:
			pass
	f.close()

	f = open("treeoverfit","w")
	for i in range(100):
		try:
			y_w = treeO(training_features,training_labels_w,validation_features,i)
			y_b = treeO(training_features,training_labels_b,validation_features,i)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i)
			f.write(st+"\n")
		except:
			pass
	f.close()			

	f = open("forestoverfit","w")
	for i in range(100):
		try:
			y_w = forestO(training_features,training_labels_w,validation_features,i)
			y_b = forestO(training_features,training_labels_b,validation_features,i)

			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i)
			f.write(st+"\n")
		except:
			pass
	f.close()	

	f = open("knnoverfit2","w")
	try:
		i = 500

		y_w = knnO(training_features,training_labels_w,validation_features,i)
		y_b = knnO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 1000

		y_w = knnO(training_features,training_labels_w,validation_features,i)
		y_b = knnO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 3000

		y_w = knnO(training_features,training_labels_w,validation_features,i)
		y_b = knnO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 4500

		y_w = knnO(training_features,training_labels_w,validation_features,i)
		y_b = knnO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")
	except:
		pass
	f.close()	

	f = open("forestoverfit2","w")
	try:
		i = 500

		y_w = forestO(training_features,training_labels_w,validation_features,i)
		y_b = forestO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 1000

		y_w = forestO(training_features,training_labels_w,validation_features,i)
		y_b = forestO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 3000

		y_w = forestO(training_features,training_labels_w,validation_features,i)
		y_b = forestO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 4500

		y_w = forestO(training_features,training_labels_w,validation_features,i)
		y_b = forestO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")
	except:
		pass
	f.close()	

	f = open("treeoverfit2","w")
	try:
		i = 500

		y_w = treeO(training_features,training_labels_w,validation_features,i)
		y_b = treeO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 1000

		y_w = treeO(training_features,training_labels_w,validation_features,i)
		y_b = treeO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 3000

		y_w = treeO(training_features,training_labels_w,validation_features,i)
		y_b = treeO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")

		i = 4500

		y_w = treeO(training_features,training_labels_w,validation_features,i)
		y_b = treeO(training_features,training_labels_b,validation_features,i)


		error_w = meanError(validation_labels_w,y_w)
		error_b = meanError(validation_labels_b,y_b)
		error_t = (error_b+error_w)/2 #mean
		st = "Got score of " + str(error_t) + " with " + str(i)
		f.write(st+"\n")
	except:
		pass
	f.close()	

	i = 101

	f = open("lastoverfits","w")
	while 1:
		i+=2
		try:
			y_w = knnO(training_features,training_labels_w,validation_features,i)
			y_b = knnO(training_features,training_labels_b,validation_features,i)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i) + " knn"
			f.write(st+"\n")

			y_w = forestO(training_features,training_labels_w,validation_features,i)
			y_b = forestO(training_features,training_labels_b,validation_features,i)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i) + " tree"
			f.write(st+"\n")

			y_w = forestO(training_features,training_labels_w,validation_features,i)
			y_b = forestO(training_features,training_labels_b,validation_features,i)


			error_w = meanError(validation_labels_w,y_w)
			error_b = meanError(validation_labels_b,y_b)
			error_t = (error_b+error_w)/2 #mean
			st = "Got score of " + str(error_t) + " with " + str(i) + " forest"
			f.write(st+"\n")
		except:
			pass
	f.close
def knnMoves():
	#use knn using just the moves as features
	#parses into 2 groups, training data, validation data
	#PARSING TIME
	
	parser = Parser()
	print("PARSING")
	games = parser.read_uci(sys.argv[1])
	scored = parser.parseStockfish(games,sys.argv[2])

	validationgames = parser.read_uci(sys.argv[3])
	validationscored = parser.parseStockfish(validationgames,sys.argv[4])

	print("Building Features/Labels")
	#Now I'm going to run KNN which is going to return y_
	training_features = []
	#finding longest game
	longest = 0
	for i in scored:
		if len(i.turns) > longest:
			longest = len(i.turns)
	for i in validationscored:
		if len(i.turns) > longest:
			longest = len(i.turns)
	#have longest game
	for i in scored:
		game = []
		for j in range(len(i.turns)):
			game.append(i.turns[j].moves[0].uci)
			game.append(i.turns[j].moves[1].uci)
		for k in range(longest):
			if k < j:
				continue
			game.append(0)
			game.append(0)
		training_features.append(game)

	training_labels_w = getLabels(scored,WHITE)
	training_labels_b = getLabels(scored,BLACK)

	validation_features = []

	for i in validationscored:
		game = []
		for j in range(len(i.turns)):
			game.append(i.turns[j].moves[0].uci)
			game.append(i.turns[j].moves[1].uci)
		for k in range(longest):
			if k < j:
				continue
			game.append(0)
			game.append(0)
		validation_features.append(game)
	validation_labels_w = getLabels(validationscored,WHITE)
	validation_labels_b = getLabels(validationscored,BLACK)

	print("Running KNN")
	y_w = knn(training_features,training_labels_w,validation_features)
	y_b = knn(training_features,training_labels_b,validation_features)

	print("Calculating Error")
	error_w = meanError(validation_labels_w,y_w)
	error_b = meanError(validation_labels_b,y_b)
	error_t = (error_b+error_w)/2 #mean

	print(str(error_w) + " White error")
	print(str(error_b) + " Black error")
	print(str(error_t) + " Total error")
	return
def knnMovesAll():
	#use knn using the moves and other features
	#parses into 2 groups, training data, validation data
	#PARSING TIME
	
	parser = Parser()
	print("PARSING")
	games = parser.read_uci(sys.argv[1])
	scored = parser.parseStockfish(games,sys.argv[2])

	validationgames = parser.read_uci(sys.argv[3])
	validationscored = parser.parseStockfish(validationgames,sys.argv[4])

	print("Building Features/Labels")
	#Now I'm going to run KNN which is going to return y_
	training_features = []
	#finding longest game
	longest = 0
	for i in scored:
		if len(i.turns) > longest:
			longest = len(i.turns)
	for i in validationscored:
		if len(i.turns) > longest:
			longest = len(i.turns)
	#have longest game
	for i in scored:
		game = []
		for j in range(len(i.turns)):
			game.append(i.turns[j].moves[0].uci)
			game.append(i.turns[j].moves[1].uci)
		for k in range(longest):
			if k < j:
				continue
			game.append(0)
			game.append(0)
		game.append(numturns(i)) #number of turns in the game
		game.append(averagescore(i)) #average score
		game.append(numlosingturns(i)) #% of game where white is ahead
		game.append(averageopening(i)) # average score in opening
		game.append(scoreopening(i)) #score at end of opening
		game.append(averagemidgame(i)) #average score in midgame
		game.append(scoremidgame(i)) #score at/near end of midgame
		game.append(averageendgame(i)) #average score in endgame
		game.append(lastscore(i)) #score of last white move at end of the game

		game.append(totalscore(i)) #gets total change in score

		game.append(averagescorechange(i)) #average amount the score changes per move
		game.append(minimumscore(i)) #minimum score in the game
		game.append(maximumscore(i)) #maximum score in the game
		game.append(scoreswitch(i)) #counts number of times who is ahead changes
		training_features.append(game)

	training_labels_w = getLabels(scored,WHITE)
	training_labels_b = getLabels(scored,BLACK)

	validation_features = []

	for i in validationscored:
		game = []
		for j in range(len(i.turns)):
			game.append(i.turns[j].moves[0].uci)
			game.append(i.turns[j].moves[1].uci)
		for k in range(longest):
			if k < j:
				continue
			game.append(0)
			game.append(0)
		game.append(numturns(i)) #number of turns in the game
		game.append(averagescore(i)) #average score
		game.append(numlosingturns(i)) #% of game where white is ahead
		game.append(averageopening(i)) # average score in opening
		game.append(scoreopening(i)) #score at end of opening
		game.append(averagemidgame(i)) #average score in midgame
		game.append(scoremidgame(i)) #score at/near end of midgame
		game.append(averageendgame(i)) #average score in endgame
		game.append(lastscore(i)) #score of last white move at end of the game

		game.append(totalscore(i)) #gets total change in score

		game.append(averagescorechange(i)) #average amount the score changes per move
		game.append(minimumscore(i)) #minimum score in the game
		game.append(maximumscore(i)) #maximum score in the game
		game.append(scoreswitch(i)) #counts number of times who is ahead changes
		validation_features.append(game)
	validation_labels_w = getLabels(validationscored,WHITE)
	validation_labels_b = getLabels(validationscored,BLACK)

	print("Running KNN")
	y_w = knn(training_features,training_labels_w,validation_features)
	y_b = knn(training_features,training_labels_b,validation_features)

	print("Calculating Error")
	error_w = meanError(validation_labels_w,y_w)
	error_b = meanError(validation_labels_b,y_b)
	error_t = (error_b+error_w)/2 #mean

	print(str(error_w) + " White error")
	print(str(error_b) + " Black error")
	print(str(error_t) + " Total error")
	return
Example #10
0
for file_path in sorted(data_dir.glob('mpd.slice.*.json'), key=alphanum_key):
    # if True:
    if counter > 5:
        break

    # file_path = data_dir / 'mpd.slice.0-999.json'
    # print("fullpath -> ", file_path)
    array_df += get_playlists_from_file(file_path, spotify)

    # setup_model(array_df)

    # sequential_regressor = sequential_model(sequential_regressor, array_df)
    # array_df = get_playlists_from_file(file_path, spotify)

    # # setup_model(array_df)
    # regressor = random_forest(regressor, array_df)
    # print(type(regressor))
    # af_df = audio_features_df_knn(file_path, spotify)
    model = knn(knn_classifier, tracks_df)
    # print('predicted track -> ', get_track_info(spotify, track_pred[0]))

    # track_name = get_track_info(spotify, track_pred[0])
    # print("PREDICTED TRACK NAME -> ", track_name["name"])
    # track_artist = get_track_info(spotify, track_pred[0])
    # print("PREDICTED ARTIST NAME -> ", track_artist["artists"][0]["name"])
    counter += 1
# sequential_regressor = sequential_model(sequential_regressor, array_df)
# %%
data_dir = file_dir / 'data'
filenames = os.listdir(data_dir)