Example #1
0
def get_models(args):
    sigmoid_flag = 1
    if args.gan == 'lsgan':
        sigmoid_flag = 0

    if args.model == 'scribbler':
        netG = scribbler.Scribbler(5, 3, 32)
    elif args.model == 'texturegan':
        netG = texturegan.TextureGAN(5, 3, 32)
    elif args.model == 'pix2pix':
        netG = define_G(5, 3, 32)
    elif args.model == 'scribbler_dilate_128':
        netG = scribbler_dilate_128.ScribblerDilate128(5, 3, 32)
    else:
        print(args.model + ' not support. Using Scribbler model')
        netG = scribbler.Scribbler(5, 3, 32)

    if args.color_space == 'lab':
        netD = discriminator.Discriminator(1, 32, sigmoid_flag)
        netD_local = discriminator.LocalDiscriminator(2, 32, sigmoid_flag)
    elif args.color_space == 'rgb':
        netD = discriminator.Discriminator(3, 32, sigmoid_flag)

    if args.load == -1:
        netG.apply(weights_init)
    else:
        load_network(netG, 'G', args.load_epoch, args.load, args)

    if args.load_D == -1:
        netD.apply(weights_init)
    else:
        load_network(netD, 'D', args.load_epoch, args.load_D, args)
        load_network(netD_local, 'D_local', args.load_epoch, args.load_D, args)
    return netG, netD, netD_local
Example #2
0
    def initialize(self):
        if os.path.isabs(self.net_path):
            net_path_full = self.net_path
        else:
            net_path_full = os.path.join(env_settings().network_path,
                                         self.net_path)

        self.net, _ = load_network(net_path_full, backbone_pretrained=False)

        if self.use_gpu:
            self.net.cuda()
        self.net.eval()

        # self.iou_predictor = self.net.bb_regressor  # original
        self.rgb_bb_regressor = self.net.rgb_bb_regressor
        self.t_bb_regressor = self.net.t_bb_regressor
        self.iou_guess = self.net.iou_guess

        self.layer_stride = {
            'conv1': 2,
            'layer1': 4,
            'layer2': 8,
            'layer3': 16,
            'layer4': 32,
            'classification': 16,
            'fc': None
        }
        self.layer_dim = {
            'conv1': 64,
            'layer1': 64,
            'layer2': 128,
            'layer3': 256,
            'layer4': 512,
            'classification': 256,
            'fc': None
        }

        self.iounet_feature_layers = self.net.bb_regressor_layer

        if isinstance(self.pool_stride, int) and self.pool_stride == 1:
            self.pool_stride = [1] * len(self.output_layers)

        self.feature_layers = sorted(
            list(set(self.output_layers + self.iounet_feature_layers)))

        self.mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1)
        self.std = torch.Tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1)