else: to_remove.append(index) mrna_dataset["beta"] = mrna_dataset["beta"].drop(to_remove) mrna_dataset["pheno"] = mrna_dataset["pheno"].drop(to_remove) # Classification with ML and DL models params = { "input_shape": mrna_dataset["beta"].shape[1], "model_serialization_path": "../data/models/classifier/", "dropout_rate": 0.3, "output_shape": len(mrna_dataset["pheno"]["subtype"].unique()) } val_res, test_res = methylation_array_kcv( mrna_dataset, NeuralClassifier, params, "subtype", callbacks=[EarlyStopping(monitor="val_loss", min_delta=0.05, patience=10)]) print("Validation accuracy: {} - Test accuracy: {}".format(val_res, test_res)) svm_val, svm_test = benchmark_svm(mrna_dataset, "subtype") print("SVM validation accuracy: {} - SVM test accuracy: {}".format( svm_val, svm_test)) knn_val, knn_test = benchmark_knn(mrna_dataset, "subtype") print("KNN validation accuracy: {} - KNN test accuracy: {}".format( knn_val, knn_test)) rf_val, rf_test = benchmark_rf(mrna_dataset, "subtype") print("RF validation accuracy: {} - RF test accuracy: {}".format( rf_val, rf_test)) with open(logfile_name, 'a') as logfile:
else: to_remove.append(index) cnv_dataset["beta"] = cnv_dataset["beta"].drop(to_remove) cnv_dataset["pheno"] = cnv_dataset["pheno"].drop(to_remove) # Classification with ML and DL models params = { "input_shape": cnv_dataset["beta"].shape[1], "model_serialization_path": "../data/models/classifier/", "dropout_rate": 0.3, "output_shape": len(cnv_dataset["pheno"]["subtype"].unique()) } val_res, test_res = methylation_array_kcv( cnv_dataset, Daneel, params, "subtype", callbacks=[EarlyStopping(monitor="val_loss", min_delta=0.05, patience=10)]) print("Validation accuracy: {} - Test accuracy: {}".format(val_res, test_res)) svm_val, svm_test = benchmark_svm(cnv_dataset, "subtype") print("SVM validation accuracy: {} - SVM test accuracy: {}".format( svm_val, svm_test)) knn_val, knn_test = benchmark_knn(cnv_dataset, "subtype") print("KNN validation accuracy: {} - KNN test accuracy: {}".format( knn_val, knn_test)) rf_val, rf_test = benchmark_rf(cnv_dataset, "subtype") print("RF validation accuracy: {} - RF test accuracy: {}".format( rf_val, rf_test)) with open(logfile_name, 'a') as logfile: