def add_teacher(): data = request.json t_obj = teacher(name=data['name'], contact=data['contact']) session.add(t_obj) session.commit() session.close() return json.dumps({"data": "{} - Added Succesfully ".format(data['name'])})
def add_teacher(request): if request.method == 'POST': form = teacherForm(request.POST) if form.is_valid(): a = teacher(first_name=form.cleaned_data["first_name"], last_name=form.cleaned_data["last_name"], email=form.cleaned_data["email"], office_details=form.cleaned_data['office_details'], phone=form.cleaned_data['phone']) a.save() return HttpResponseRedirect('/all-teacher/') else: form = teacherForm() return render_to_response('add-teacher.html', {'form': form}, RequestContext(request))
with tf.Graph().as_default(), tf.Session() as sess: # placeholders for training data phone_ = tf.placeholder(tf.float32, [None, PATCH_SIZE]) phone_image = tf.reshape(phone_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 3]) dslr_ = tf.placeholder(tf.float32, [None, PATCH_SIZE]) dslr_image = tf.reshape(dslr_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 3]) adv_ = tf.placeholder(tf.float32, [None, 1]) # get processed enhanced image enhanced, _, _ = models.teacher(phone_image) # transform both dslr and enhanced images to grayscale enhanced_gray = tf.reshape(tf.image.rgb_to_grayscale(enhanced), [-1, PATCH_WIDTH * PATCH_HEIGHT]) dslr_gray = tf.reshape(tf.image.rgb_to_grayscale(dslr_image), [-1, PATCH_WIDTH * PATCH_HEIGHT]) # push randomly the enhanced or dslr image to an adversarial CNN-discriminator adversarial_ = tf.multiply(enhanced_gray, 1 - adv_) + tf.multiply( dslr_gray, adv_) # if adv_ = 0, enhanced_gray adversarial_image = tf.reshape(adversarial_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 1])
with tf.Graph().as_default(), tf.Session() as sess: # placeholders for training data phone_ = tf.placeholder(tf.float32, [None, PATCH_SIZE]) phone_image = tf.reshape(phone_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 3]) dslr_ = tf.placeholder(tf.float32, [None, PATCH_SIZE]) dslr_image = tf.reshape(dslr_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 3]) adv_ = tf.placeholder(tf.float32, [None, 1]) # get processed enhanced image enhanced, at1, at2 = models.student(phone_image) enhanced_teacher, at1_, at2_ = models.teacher(phone_image) # transform both dslr and enhanced images to grayscale enhanced_gray = tf.reshape(tf.image.rgb_to_grayscale(enhanced), [-1, PATCH_WIDTH * PATCH_HEIGHT]) dslr_gray = tf.reshape(tf.image.rgb_to_grayscale(dslr_image), [-1, PATCH_WIDTH * PATCH_HEIGHT]) # push randomly the enhanced or dslr image to an adversarial CNN-discriminator adversarial_ = tf.multiply(enhanced_gray, 1 - adv_) + tf.multiply( dslr_gray, adv_) # if adv_ = 0, enhanced_gray adversarial_image = tf.reshape(adversarial_, [-1, PATCH_HEIGHT, PATCH_WIDTH, 1])
from models import Session, teacher, student session0 = Session() teacher0 = teacher(teacher_id = 1, name = "Ya", email = "*****@*****.**", password = "******") student0 = student(student_id = 1, name = "Tlumok",s_bal = 10, marks = [9,11) session0.add(teacher0) session0.add(student0) session0.commit() session0.close() # psql -h localhost -d students_rating -U postgres -p 5432 -a -q -f create_table.sql # python add_models.py # чекнути пгадмін # alembic revision --autogenerate # alembic upgrade head # env LDFLAGS="-I/usr/local/opt/openssl/include -L/usr/local/opt/openssl/lib" pip install psycopg2
# get all available image resolutions res_sizes = utils.get_resolutions() # get the specified image resolution IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_SIZE = utils.get_specified_res(res_sizes, phone, resolution) # disable gpu if specified config = tf.ConfigProto(device_count={'GPU': 0}) if use_gpu == "false" else None # create placeholders for input images x_ = tf.placeholder(tf.float32, [None, IMAGE_SIZE]) x_image = tf.reshape(x_, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]) # generate enhanced image # enhanced,_,_ = student(x_image) enhanced,_,_ = teacher(x_image) with tf.Session(config=config) as sess: test_dir = dped_dir + phone.replace("_orig", "") + "/test_data/full_size_test_images/" test_photos = [f for f in os.listdir(test_dir) if os.path.isfile(test_dir + f)] if test_subset == "small": # use five first images only test_photos = test_photos[0:5] if phone.endswith("_orig"): # load pre-trained model saver = tf.train.Saver() saver.restore(sess, "pretrained_teacher_model/teacher.ckpt")