def main(): if not os.path.isdir(CHECKPOINT): os.makedirs(CHECKPOINT) print('==> Preparing dataset') trainloader, testloader = load_CIFAR(batch_size=BATCH_SIZE, num_workers=NUM_WORKERS) CLASSES = [] AUROCs = [] auroc = AverageMeter() for t, cls in enumerate(ALL_CLASSES): print('\nTask: [%d | %d]\n' % (t + 1, len(ALL_CLASSES))) CLASSES = [cls] print("==> Creating model") model = LeNet(num_classes=1) if CUDA: model = model.cuda() model = nn.DataParallel(model) cudnn.benchmark = True print(' Total params: %.2fK' % (sum(p.numel() for p in model.parameters()) / 1000)) criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) print("==> Learning") best_loss = 1e10 learning_rate = LEARNING_RATE for epoch in range(EPOCHS): # decay learning rate if (epoch + 1) % EPOCHS_DROP == 0: learning_rate *= LR_DROP for param_group in optimizer.param_groups: param_group['lr'] = learning_rate print('Epoch: [%d | %d]' % (epoch + 1, EPOCHS)) train_loss = train(trainloader, model, criterion, CLASSES, CLASSES, optimizer=optimizer, use_cuda=CUDA) test_loss = train(testloader, model, criterion, CLASSES, CLASSES, test=True, use_cuda=CUDA) # save model is_best = test_loss < best_loss best_loss = min(test_loss, best_loss) save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'loss': test_loss, 'optimizer': optimizer.state_dict() }, CHECKPOINT, is_best) print("==> Calculating AUROC") filepath_best = os.path.join(CHECKPOINT, "best.pt") checkpoint = torch.load(filepath_best) model.load_state_dict(checkpoint['state_dict']) new_auroc = calc_avg_AUROC(model, testloader, CLASSES, CLASSES, CUDA) auroc.update(new_auroc) print('New Task AUROC: {}'.format(new_auroc)) print('Average AUROC: {}'.format(auroc.avg)) AUROCs.append(auroc.avg) print('\nAverage Per-task Performance over number of tasks') for i, p in enumerate(AUROCs): print("%d: %f" % (i + 1, p))
def main(): # Data Loader (Input Pipeline) print('loading dataset...') train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False) # Define models print('building model...') if args.dataset == 'mnist': clf1 = LeNet() if args.dataset == 'fashionmnist': clf1 = resnet.ResNet18_F(10) if args.dataset == 'cifar10': clf1 = resnet.ResNet34(10) if args.dataset == 'svhn': clf1 = resnet.ResNet34(10) clf1.cuda() optimizer = torch.optim.SGD(clf1.parameters(), lr=args.lr, weight_decay=args.weight_decay) with open(txtfile, "a") as myfile: myfile.write('epoch train_acc val_acc test_acc\n') epoch = 0 train_acc = 0 val_acc = 0 # evaluate models with random weights test_acc = evaluate(test_loader, clf1) print('Epoch [%d/%d] Test Accuracy on the %s test data: Model1 %.4f %%' % (epoch + 1, args.n_epoch_1, len(test_dataset), test_acc)) # save results with open(txtfile, "a") as myfile: myfile.write( str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) + ' ' + str(test_acc) + ' ' + "\n") best_acc = 0.0 # training for epoch in range(1, args.n_epoch_1): # train models clf1.train() train_acc = train(clf1, train_loader, epoch, optimizer, nn.CrossEntropyLoss()) # validation val_acc = evaluate(val_loader, clf1) # evaluate models test_acc = evaluate(test_loader, clf1) # save results print( 'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%' % (epoch + 1, args.n_epoch_1, len(train_dataset), train_acc)) print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' % (epoch + 1, args.n_epoch_1, len(val_dataset), val_acc)) print( 'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' % (epoch + 1, args.n_epoch_1, len(test_dataset), test_acc)) with open(txtfile, "a") as myfile: myfile.write( str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) + ' ' + str(test_acc) + ' ' + "\n") if val_acc > best_acc: best_acc = val_acc torch.save(clf1.state_dict(), model_save_dir + '/' + 'model.pth') print('Matrix Factorization is doing...') clf1.load_state_dict(torch.load(model_save_dir + '/' + 'model.pth')) A = respresentations_extract(train_loader, clf1, len(train_dataset), args.dim, batch_size) A_val = respresentations_extract(val_loader, clf1, len(val_dataset), args.dim, batch_size) A_total = np.append(A, A_val, axis=0) W_total, H_total, error = train_m(A_total, args.basis, args.iteration_nmf, 1e-5) for i in range(W_total.shape[0]): for j in range(W_total.shape[1]): if W_total[i, j] < 1e-6: W_total[i, j] = 0. W = W_total[0:len(train_dataset), :] W_val = W_total[len(train_dataset):, :] print('Transition Matrix is estimating...Wating...') logits_matrix = probability_extract(train_loader, clf1, len(train_dataset), args.num_classes, batch_size) idx_matrix_group, transition_matrix_group = estimate_matrix( logits_matrix, model_save_dir) logits_matrix_val = probability_extract(val_loader, clf1, len(val_dataset), args.num_classes, batch_size) idx_matrix_group_val, transition_matrix_group_val = estimate_matrix( logits_matrix_val, model_save_dir) func = nn.MSELoss() model = Matrix_optimize(args.basis, args.num_classes) optimizer_1 = torch.optim.Adam(model.parameters(), lr=0.001) basis_matrix_group = basis_matrix_optimize(model, optimizer_1, args.basis, args.num_classes, W, transition_matrix_group, idx_matrix_group, func, model_save_dir, args.n_epoch_4) basis_matrix_group_val = basis_matrix_optimize( model, optimizer_1, args.basis, args.num_classes, W_val, transition_matrix_group_val, idx_matrix_group_val, func, model_save_dir, args.n_epoch_4) for i in range(basis_matrix_group.shape[0]): for j in range(basis_matrix_group.shape[1]): for k in range(basis_matrix_group.shape[2]): if basis_matrix_group[i, j, k] < 1e-6: basis_matrix_group[i, j, k] = 0. optimizer_ = torch.optim.SGD(clf1.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum) best_acc = 0.0 for epoch in range(1, args.n_epoch_2): # train model clf1.train() train_acc = train_correction(clf1, train_loader, epoch, optimizer_, W, basis_matrix_group, batch_size, args.num_classes, args.basis) # validation val_acc = val_correction(clf1, val_loader, epoch, W_val, basis_matrix_group_val, batch_size, args.num_classes, args.basis) # evaluate models test_acc = evaluate(test_loader, clf1) if val_acc > best_acc: best_acc = val_acc torch.save(clf1.state_dict(), model_save_dir + '/' + 'model.pth') with open(txtfile, "a") as myfile: myfile.write( str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) + ' ' + str(test_acc) + ' ' + "\n") # save results print( 'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%' % (epoch + 1, args.n_epoch_2, len(train_dataset), train_acc)) print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' % (epoch + 1, args.n_epoch_2, len(val_dataset), val_acc)) print( 'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' % (epoch + 1, args.n_epoch_2, len(test_dataset), test_acc)) clf1.load_state_dict(torch.load(model_save_dir + '/' + 'model.pth')) optimizer_r = torch.optim.Adam(clf1.parameters(), lr=args.lr_revision, weight_decay=args.weight_decay) nn.init.constant_(clf1.T_revision.weight, 0.0) for epoch in range(1, args.n_epoch_3): # train models clf1.train() train_acc = train_revision(clf1, train_loader, epoch, optimizer_r, W, basis_matrix_group, batch_size, args.num_classes, args.basis) # validation val_acc = val_revision(clf1, val_loader, epoch, W_val, basis_matrix_group, batch_size, args.num_classes, args.basis) # evaluate models test_acc = evaluate(test_loader, clf1) with open(txtfile, "a") as myfile: myfile.write( str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) + ' ' + str(test_acc) + ' ' + "\n") # save results print( 'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%' % (epoch + 1, args.n_epoch_3, len(train_dataset), train_acc)) print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' % (epoch + 1, args.n_epoch_3, len(val_dataset), val_acc)) print( 'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' % (epoch + 1, args.n_epoch_3, len(test_dataset), test_acc))