frame_step, num_mel_bins=40, lower_frequency=20, upper_frequency=4000, num_coefficients=10, mfcc=True) strides = [2, 1] train_ds = signal_generator.make_dataset(train_data, True) test_ds = signal_generator.make_dataset(test_data, False) val_ds = signal_generator.make_dataset(val_data, False) #Train the MultiLayer Perceptron mlp = MLP() mlp.train(train_ds, val_ds, 20) filename = 'Model_mlp' mlp._model().save(filename) #Train the Convolutional NN cnn = ConvNet(strides) cnn.train(train_ds, val_ds, 20) filename = 'Model_cnn' cnn._model().save(filename) #Train the DS Convolutional NN dscnn = DS_CNN(strides) dscnn.train(train_ds, val_ds, 20) filename = 'Model_dscnn' dscnn._model().save(filename)