corpus.dictionary.weights_matrix = to_gpu(args.cuda, corpus.dictionary.weights_matrix) autoencoder = Seq2Seq2Decoder(emsize=args.emsize, nhidden=args.nhidden, ntokens=ntokens, nlayers=args.nlayers, noise_r=args.noise_r, hidden_init=args.hidden_init, dropout=args.dropout, gpu=args.cuda, weights_matrix=corpus.dictionary.weights_matrix) gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g) gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d) classifier = MLP_Classify(ninput=args.nhidden, noutput=1, layers=args.arch_classify) g_factor = None print(autoencoder) print(gan_gen) print(gan_disc) print(classifier) optimizer_ae = optim.SGD(autoencoder.parameters(), lr=args.lr_ae) optimizer_gan_g = optim.Adam(gan_gen.parameters(), lr=args.lr_gan_g, betas=(args.beta1, 0.999)) optimizer_gan_d = optim.Adam(gan_disc.parameters(), lr=args.lr_gan_d, betas=(args.beta1, 0.999))
############################################################################### ntokens = len(corpus.dictionary.word2idx) autoencoder = Seq2Seq2Decoder(emsize=args.emsize, nhidden=args.nhidden, ntokens=ntokens, nlayers=args.nlayers, noise_r=args.noise_r, hidden_init=args.hidden_init, dropout=args.dropout, gpu=args.cuda) gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g) gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d) classifier = MLP_Classify(ninput=args.nhidden, noutput=1, layers=args.arch_classify) g_factor = None print(autoencoder) print(gan_gen) print(gan_disc) print(classifier) optimizer_ae = optim.SGD(autoencoder.parameters(), lr=args.lr_ae) optimizer_gan_g = optim.Adam(gan_gen.parameters(), lr=args.lr_gan_g, betas=(args.beta1, 0.999)) optimizer_gan_d = optim.Adam(gan_disc.parameters(), lr=args.lr_gan_d, betas=(args.beta1, 0.999))
pooling_enc=args.pooling_enc, gpu=args.cuda) else: autoencoder = Seq2Seq2Decoder(emsize=args.emsize, nhidden=args.nhidden, ntokens=ntokens, nlayers=args.nlayers, noise_r=args.noise_r, hidden_init=args.hidden_init, dropout=args.dropout, gpu=args.cuda) gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g) gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d) classifier = MLP_Classify(ninput=args.nhidden, noutput=1, layers=args.arch_classify) g_factor = None print(autoencoder) print(gan_gen) print(gan_disc) print(classifier) if args.cuda: autoencoder = autoencoder.cuda() gan_gen = gan_gen.cuda() gan_disc = gan_disc.cuda() classifier = classifier.cuda()