def get_model(cfg): num_classes = int(cfg['n_classes']) input_size = int(cfg['data_dim']) if cfg['model'] == 'blstm': classifier = BiLSTM(input_size, n_classes=num_classes, embedding_size=128, hidden_size=256, dropout=cfg['dropout']) if cfg['model'] == 'dec_ori': classifier = DGCNNSeq(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), k=5, fov=1, dropout=0.5) if cfg['model'] == 'dec': classifier = DECSeq( input_size, int(cfg['embedding_size']), num_classes, dropout=cfg['dropout'], #fov=3, k=int(cfg['k_dec']), # k=5, aggr='max', #pool_op=global_max_pool) pool_op=cfg['pool_op']) #bn=True) if cfg['model'] == 'nnc': classifier = NNC(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), pool_op=cfg['pool_op'], same_size=cfg['same_size']) if cfg['model'] == 'gcn': classifier = GCNConvNetBN(input_size, int(cfg['embedding_size']), num_classes, pool_op=cfg['pool_op'], same_size=cfg['same_size']) if cfg['model'] == 'gat': classifier = GAT(input_size, num_classes) elif cfg['model'] == 'pn_geom': classifier = PNptg2(input_size, int(cfg['embedding_size']), num_classes, #batch_size=int(cfg['batch_size']), same_size=cfg['same_size']) return classifier
def get_model(cfg): num_classes = int(cfg['n_classes']) input_size = int(cfg['data_dim']) n_gf = int(cfg['num_gf']) if cfg['model'] == 'blstm': classifier = BiLSTM(input_size, n_classes=num_classes, embedding_size=128, hidden_size=256) if cfg['model'] == 'dec_ori': classifier = DGCNNSeq(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), k=3, fov=1, dropout=0.5) if cfg['model'] == 'dec': classifier = DECSeq( input_size, int(cfg['embedding_size']), num_classes, #fov=3, batch_size=int(cfg['batch_size']), k=7, aggr='max', pool_op=global_max_pool, same_size=cfg['same_size']) #bn=True) if cfg['model'] == 'nnc': classifier = NNC(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), pool_op=global_max_pool, same_size=cfg['same_size']) if cfg['model'] == 'gcn': classifier = GCNConvNet(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), pool_op=global_max_pool, same_size=cfg['same_size']) elif cfg['model'] == 'pn_geom': classifier = PNptg(input_size, int(cfg['embedding_size']), num_classes, batch_size=int(cfg['batch_size']), pool_op=global_max_pool, same_size=cfg['same_size']) return classifier