def main(): print("Model_testing") while True: user = input( "1. ARIMA\n2. Linear Regression\n3. Polynomial Regression\n4. SVR\n5. SVR_2\n6. Random Forest\n7. Quit\n" ) if user == '1': ARIMA.run() elif user == '2': Lin_reg.run() elif user == '3': Poly_reg.run() elif user == '4': SVR.run() elif user == '5': SVR_2.run() elif user == '6': RF.run() elif user == '7': break print("\n----------MAIN-----------\n")
def repeat_experiment_n_times(lstm, rf, xg_reg, scenario, times_to_repeat=100, adversarial_attack=False, evasion_attack=False, is_white_box_attack=True, use_lstm_for_adversarial=False): tn_s = [] tp_s = [] fp_s = [] fn_s = [] f1_s = [] balanced_accuracies = [] precisions = [] recalls = [] aucpr_s = [] roc_aucs = [] num_decisions_taken_by_lstm,\ num_decisions_taken_by_rf, \ num_decisions_taken_by_xgb, \ num_decisions_correctly_taken_from_lstm, \ num_decisions_correctly_taken_from_lstm_and_not_from_xgb_or_rf = 0, 0, 0, 0, 0 for i in range(times_to_repeat): print("Iteration", i) x_test_set, y_test_set = sequences_crafting_for_classification.get_test_set( scenario=scenario) x_val, y_val, x_test, y_test = evaluation.get_val_test_set( x_test_set, y_test_set, val_size=0.25) x_val_supervised = x_val[:, len(x_val[0]) - 1, :] x_test_supervised = x_test[:, len(x_val[0]) - 1, :] if adversarial_attack or evasion_attack: # getting train set for training if is_white_box_attack: print("Using as training set, the real one - whitebox attack") dataset_type = REAL_DATASET else: print("Using as training set, the old one - blackbox attack") dataset_type = OLD_DATASET x_train, y_train = sequences_crafting_for_classification.get_train_set( dataset_type=dataset_type) x_train_supervised = x_train[:, look_back, :] if adversarial_attack: print("Crafting an adversarial attack") if not use_lstm_for_adversarial: print("The attacker will use a Multilayer perceptron") # training multilayer perceptron # todo: hyper param tuning multilayer perceptron adversarial_model = MultiLayerPerceptron.create_fit_model( x_train_supervised, y_train) # crafting adversarial samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] frauds = x_test_supervised[np.where(y_test == 1)] adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.01) x_test[np.where(y_test == 1), len(x_test[0]) - 1] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] else: print("The attacker will use a LSTM network") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_REAL_DATASET_AGGREGATED else: params = BEST_PARAMS_LSTM_REAL_DATASET_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_LSTM_OLD_DATASET_NO_AGGREGATED adversarial_model = LSTM_classifier.create_fit_model( x_train, y_train, look_back, params=params) frauds = x_test[np.where(y_test == 1)] adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.01) x_test[np.where(y_test == 1)] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] if evasion_attack: print("Crafting an evasion attack") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_REAL_DATASET_AGGREGATED else: params = BEST_PARAMS_RF_REAL_DATASET_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_RF_OLD_DATASET_NO_AGGREGATED # training the oracle oracle = RF.create_model(x_train_supervised, y_train, params=params) # get the oracle threshold y_val_pred_oracle = oracle.predict_proba(x_val_supervised) oracle_threshold = evaluation.find_best_threshold_fixed_fpr( y_val, y_val_pred_oracle[:, 1]) # if the oracle predicts the fraud as fraud -> discard it, otherwise inject in real bank system y_pred_oracle = rf.predict_proba(x_test_supervised) y_pred_oracle = y_pred_oracle[:, 1].ravel() y_pred_oracle = np.array( evaluation.adjusted_classes(y_pred_oracle, oracle_threshold)) x_test = x_test[(np.where(( (y_test == 1) & (y_pred_oracle == 0)) | (y_test == 0)))] y_test = y_test[(np.where(( (y_test == 1) & (y_pred_oracle == 0)) | (y_test == 0)))] x_test_supervised = x_test[:, len(x_test[0]) - 1, :] try: # a, b, c, d, e = 0, 0, 0, 0, 0 # y_test_pred, not_by_xgb, not_by_rf, not_found_by_others = predict_test_based_on_voting(lstm, rf, xg_reg, x_val, x_val_supervised, y_val, x_test, x_test_supervised, y_test) y_test_pred, a, b, c, d, e = predict_test_based_on_more_confident( lstm, rf, xg_reg, x_val, x_val_supervised, y_val, x_test, x_test_supervised, y_test) # y_test_pred, a, b, c, d, e = predict_test_based_on_expon(lstm, rf, xg_reg, x_val, x_val_supervised, y_val, x_test, x_test_supervised, y_test) # y_test_pred = predict_test_based_on_sum(lstm, rf, xg_reg, x_val, x_val_supervised, y_val, x_test, x_test_supervised) # y_test_pred = predict_test_based_on_more_confident_and_majority_voting(lstm, rf, xg_reg, x_val, x_val_supervised, y_val, x_test, x_test_supervised, y_test) # not_found_by_xgboost += not_by_xgb # not_by_rf += not_by_rf # not_found_by_others += not_by_others y_test_pred = np.array(y_test_pred) confusion, f1, balanced_accuracy, precision, recall, aucpr, roc_auc = evaluation.get_performance( y_test, y_test_pred, threshold=True) tn = confusion[0, 0] tp = confusion[1, 1] fp = confusion[0, 1] fn = confusion[1, 0] tn_s.append(tn) tp_s.append(tp) fp_s.append(fp) fn_s.append(fn) f1_s.append(f1) num_decisions_taken_by_lstm += a num_decisions_taken_by_rf += b num_decisions_taken_by_xgb += c num_decisions_correctly_taken_from_lstm += d num_decisions_correctly_taken_from_lstm_and_not_from_xgb_or_rf += e balanced_accuracies.append(balanced_accuracy) precisions.append(precision) recalls.append(recall) aucpr_s.append(aucpr) roc_aucs.append(roc_auc) except RuntimeError: i -= 1 print("Num decisions taken from lstm: ", num_decisions_taken_by_lstm / times_to_repeat) print("Num decisions taken by rf: ", num_decisions_taken_by_rf / times_to_repeat) print("Num decisions taken by xgb: ", num_decisions_taken_by_xgb / times_to_repeat) print("Num decisions taken by lstm correctly taken: ", num_decisions_correctly_taken_from_lstm / times_to_repeat) print( "Num decisions taken by lstm correctly taken and not by others: ", num_decisions_correctly_taken_from_lstm_and_not_from_xgb_or_rf / times_to_repeat) evaluation.print_results( np.array(tn_s).mean(), np.array(fp_s).mean(), np.array(fn_s).mean(), np.array(tp_s).mean(), np.array(f1_s).mean(), np.array(balanced_accuracies).mean(), np.array(precisions).mean(), np.array(recalls).mean(), np.array(aucpr_s).mean(), np.array(roc_aucs).mean())
look_back = LOOK_BACK print("Lookback using: ", look_back) x_train, y_train = sequences_crafting_for_classification.get_train_set() # if the dataset is the real one -> contrast imbalanced dataset problem if DATASET_TYPE == REAL_DATASET: x_train, y_train = resampling_dataset.oversample_set(x_train, y_train) # train model for supervised models (xgboost/rf) x_train_supervised = x_train[:, look_back, :] y_train_supervised = y_train print("Training models...") lstm = LSTM_classifier.create_fit_model(x_train, y_train, look_back) rf = RF.create_model(x_train_supervised, y_train_supervised) xg_reg = xgboost_classifier.create_model(x_train_supervised, y_train_supervised) if DATASET_TYPE == INJECTED_DATASET or DATASET_TYPE == OLD_DATASET: scenarios = [ FIRST_SCENARIO, SECOND_SCENARIO, THIRD_SCENARIO, FOURTH_SCENARIO, FIFTH_SCENARIO, SIXTH_SCENARIO, SEVENTH_SCENARIO, EIGHTH_SCENARIO, NINTH_SCENARIO, ALL_SCENARIOS ] scenarios = [ALL_SCENARIOS] for scenario in scenarios: print("-------------------", scenario, "scenario --------------------------") repeat_experiment_n_times(lstm, rf,
def experiment_with_cdf(lstm, scale_lstm, loc_lstm, mean_lstm, std_lstm, threshold_lstm, rf, scale_rf, loc_rf, mean_rf, std_rf, threshold_rf, xg_reg, scale_xgb, loc_xgb, mean_xgb, std_xgb, threshold_xgb, scenario, adversarial_attack=False, evasion_attack=False, is_white_box_attack=True, use_lstm_for_adversarial=False): x_test, y_test = sequences_crafting_for_classification.get_test_set( scenario=scenario) x_test_supervised = x_test[:, len(x_test[0]) - 1, :] if adversarial_attack or evasion_attack: # getting train set for training if is_white_box_attack: print("whitebox attack") dataset_type = INJECTED_DATASET else: print("blackbox attack") dataset_type = OLD_DATASET x_train, y_train = sequences_crafting_for_classification.get_train_set( dataset_type=dataset_type) x_train_supervised = x_train[:, look_back, :] if adversarial_attack: print("Crafting an adversarial attack") if not use_lstm_for_adversarial: print("The attacker will use a Multilayer perceptron") # training multilayer perceptron # todo: hyper param tuning multilayer perceptron adversarial_model = MultiLayerPerceptron.create_fit_model( x_train_supervised, y_train) # crafting adversarial samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] frauds = x_test_supervised[np.where(y_test == 1)] adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.01) x_test[np.where(y_test == 1), len(x_test[0]) - 1] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] else: print("The attacker will use a LSTM network") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_AGGREGATED else: params = BEST_PARAMS_LSTM_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_LSTM_OLD_DATASET_NO_AGGREGATED adversarial_model, _ = LSTM_classifier.create_fit_model( x_train, y_train, look_back, params=params) frauds = x_test[np.where(y_test == 1)] adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.1) x_test[np.where(y_test == 1)] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] if evasion_attack: print("Crafting an evasion attack") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_AGGREGATED else: params = BEST_PARAMS_RF_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_RF_OLD_DATASET_NO_AGGREGATED # training the oracle oracle, oracle_threshold = RF.create_model(x_train_supervised, y_train, params=params) # if the oracle predicts the fraud as fraud -> discard it, otherwise inject in real bank system y_pred_oracle = oracle.predict_proba(x_test_supervised) y_pred_oracle = y_pred_oracle[:, 1].ravel() y_pred_oracle = np.array( evaluation.adjusted_classes(y_pred_oracle, oracle_threshold)) x_test = x_test[(np.where(((y_test == 1) & (y_pred_oracle == 0)) | (y_test == 0)))] y_test = y_test[(np.where(((y_test == 1) & (y_pred_oracle == 0)) | (y_test == 0)))] x_test_supervised = x_test[:, len(x_test[0]) - 1, :] y_test_pred, thresholds, num_decisions_taken_by_lstm, num_decisions_taken_by_rf, num_decisions_taken_by_xgb = predict_test_based_on_expon( lstm, scale_lstm, loc_lstm, mean_lstm, std_lstm, threshold_lstm, rf, scale_rf, loc_rf, mean_rf, std_rf, threshold_rf, xg_reg, scale_xgb, loc_xgb, mean_xgb, std_xgb, threshold_xgb, x_test, x_test_supervised, y_test) y_test_pred = np.array(y_test_pred) confusion, f1, balanced_accuracy, precision, recall, aucpr, roc_auc, fpr_values, tpr_values, accuracy, matthews_coeff = evaluation.get_performance( y_test, y_test_pred, thresholds) tn = confusion[0, 0] tp = confusion[1, 1] fp = confusion[0, 1] fn = confusion[1, 0] print("Num decisions taken from lstm: ", num_decisions_taken_by_lstm) print("Num decisions taken by rf: ", num_decisions_taken_by_rf) print("Num decisions taken by xgb: ", num_decisions_taken_by_xgb) evaluation.print_results(tn, fp, fn, tp, f1, balanced_accuracy, precision, recall, aucpr, roc_auc, fpr_values, tpr_values, accuracy, matthews_coeff)
x_train, y_train = sequences_crafting_for_classification.get_train_set() # if the dataset is the real one -> contrast imbalanced dataset problem if DATASET_TYPE == REAL_DATASET: x_train, y_train = resampling_dataset.oversample_set(x_train, y_train) # train model for supervised models (xgboost/rf) x_train_supervised = x_train[:, look_back, :] y_train_supervised = y_train times_to_repeat = 10 print("Training models...") lstm, scale_lstm, loc_lstm, mean_lstm, std_lstm, threshold_lstm = LSTM_classifier.create_fit_model_for_ensemble_based_on_cdf( x_train, y_train, look_back, times_to_repeat=times_to_repeat) rf, scale_rf, loc_rf, mean_rf, std_rf, threshold_rf = RF.create_fit_model_for_ensemble_based_on_cdf( x_train_supervised, y_train_supervised, times_to_repeat=times_to_repeat) xg_reg, scale_xgb, loc_xgb, mean_xgb, std_xgb, threshold_xgb = xgboost_classifier.create_fit_model_for_ensemble_based_on_cdf( x_train_supervised, y_train_supervised, times_to_repeat=times_to_repeat) if DATASET_TYPE == INJECTED_DATASET or DATASET_TYPE == OLD_DATASET: scenarios = [ FIRST_SCENARIO, SECOND_SCENARIO, THIRD_SCENARIO, FOURTH_SCENARIO, FIFTH_SCENARIO, SIXTH_SCENARIO, SEVENTH_SCENARIO, EIGHTH_SCENARIO, NINTH_SCENARIO, ALL_SCENARIOS ] # scenarios = [ALL_SCENARIOS] for scenario in scenarios: print("-------------------", scenario, "scenario --------------------------") experiment_with_cdf(lstm, scale_lstm,
def experiment(lstm, threshold_lstm, xg_reg, threshold_xgb, rf, threshold_rf, scenario, adversarial_attack=False, evasion_attack=False, is_white_box_attack=True, use_lstm_for_adversarial=False): x_test, y_test = sequences_crafting_for_classification.get_test_set( scenario=scenario) if adversarial_attack or evasion_attack: # getting train set for training if is_white_box_attack: print("Using as traing set, the real one - whitebox attack") dataset_type = INJECTED_DATASET else: print("Using as traing set, the old one - blackbox attack") dataset_type = OLD_DATASET x_train, y_train = sequences_crafting_for_classification.get_train_set( dataset_type=dataset_type) x_train_supervised = x_train[:, look_back, :] x_test_supervised = x_test[:, len(x_test[0]) - 1, :] if adversarial_attack: print("Crafting an adversarial attack") if not use_lstm_for_adversarial: print("The attacker will use a Multilayer perceptron") adversarial_model = MultiLayerPerceptron.create_fit_model( x_train_supervised, y_train) frauds = x_test_supervised[np.where(y_test == 1)] adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.01) # in lstm samples, must be changed the last transaction of the sequence x_test[np.where(y_test == 1), len(x_test[0]) - 1] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] else: print("The attacker will use a LSTM network") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_REAL_DATASET_AGGREGATED else: params = BEST_PARAMS_LSTM_REAL_DATASET_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_LSTM_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_LSTM_OLD_DATASET_NO_AGGREGATED frauds = x_test[np.where(y_test == 1)] adversarial_model, _ = LSTM_classifier.create_fit_model( x_train, y_train, look_back, params=params) adversarial_samples = fgsm.craft_sample(frauds, adversarial_model, epsilon=0.1) # in lstm samples, must be changed the last transaction of the sequence x_test[np.where(y_test == 1)] = adversarial_samples x_test_supervised = x_test[:, len(x_test[0]) - 1, :] if evasion_attack: print("Crafting an evasion attack") # train the network using the right params if is_white_box_attack: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_AGGREGATED else: params = BEST_PARAMS_RF_NO_AGGREGATED else: if USING_AGGREGATED_FEATURES: params = BEST_PARAMS_RF_OLD_DATASET_AGGREGATED else: params = BEST_PARAMS_RF_OLD_DATASET_NO_AGGREGATED # training the oracle oracle, oracle_threshold = RF.create_model(x_train_supervised, y_train, params=params) # if the oracle predicts the fraud as fraud -> discard it, otherwise inject in real bank system y_pred_oracle = rf.predict_proba(x_test_supervised) y_pred_oracle = y_pred_oracle[:, 1].ravel() y_pred_oracle = np.array( evaluation.adjusted_classes(y_pred_oracle, oracle_threshold)) x_test = x_test[(np.where((y_test == 1) & (y_pred_oracle == 0) | (y_test == 0)))] y_test = y_test[(np.where((y_test == 1) & (y_pred_oracle == 0) | (y_test == 0)))] x_test_supervised = x_test[:, len(x_test[0]) - 1, :] # predicting test set y_pred_lstm = lstm.predict(x_test) y_pred_rf = rf.predict_proba(x_test_supervised) y_pred_xgb = xg_reg.predict_proba(x_test_supervised) y_pred_lstm = y_pred_lstm.ravel() y_pred_rf = y_pred_rf[:, 1].ravel() y_pred_xgb = y_pred_xgb[:, 1].ravel() print("LSTM") evaluation.evaluate(y_test, y_pred_lstm, threshold_lstm) print("RF") evaluation.evaluate(y_test, y_pred_rf, threshold_rf) print("Xgboost") evaluation.evaluate(y_test, y_pred_xgb, threshold_xgb) if not adversarial_attack and not evasion_attack: x_test_supervised = x_test[:, len(x_test[0]) - 1, :] x_train, y_train = sequences_crafting_for_classification.get_train_set( ) x_train_supervised = x_train[:, look_back, :] print("LSTM") y_pred_lstm = lstm.predict(x_test) evaluation.evaluate(y_test, y_pred_lstm, threshold_lstm) explainability.explain_dataset(lstm, x_train, x_test, threshold_lstm, y_test) print("RF") y_pred_rf = rf.predict_proba(x_test_supervised)[:, 1] evaluation.evaluate(y_test, y_pred_rf, threshold_rf) explainability.explain_dataset(rf, x_train_supervised, x_test_supervised, threshold_rf, y_test) print("Xgboost") y_pred_xgb = xg_reg.predict_proba(x_test_supervised)[:, 1] evaluation.evaluate(y_test, y_pred_xgb, threshold_xgb) explainability.explain_dataset(xg_reg, x_train_supervised, x_test_supervised, threshold_xgb, y_test) y_pred_lstm = evaluation.adjusted_classes(y_pred_lstm, threshold_lstm) y_pred_rf = evaluation.adjusted_classes(y_pred_rf, threshold_rf) y_pred_xgb = evaluation.adjusted_classes(y_pred_xgb, threshold_xgb) lstm_fraud_indices = evaluation.get_fraud_indices(y_test, y_pred_lstm) rf_fraud_indices = evaluation.get_fraud_indices(y_test, y_pred_rf) xgboost_fraud_indices = evaluation.get_fraud_indices(y_test, y_pred_xgb) evaluation.print_frauds_stats(lstm_fraud_indices, rf_fraud_indices, xgboost_fraud_indices) lstm_genuine_indices = evaluation.get_genuine_indices(y_test, y_pred_lstm) rf_genuine_indices = evaluation.get_genuine_indices(y_test, y_pred_rf) xgboost_genuine_indices = evaluation.get_genuine_indices( y_test, y_pred_xgb) evaluation.print_genuine_stats(lstm_genuine_indices, rf_genuine_indices, xgboost_genuine_indices)
# if the dataset is the real one -> contrast imbalanced dataset problem if DATASET_TYPE == REAL_DATASET: x_train, y_train = resampling_dataset.oversample_set(x_train, y_train) # train model for supervised models (xgboost/rf) x_train_supervised = x_train[:, look_back, :] y_train_supervised = y_train print("Training models...") times_to_repeat = 10 lstm, threshold_lstm = LSTM_classifier.create_fit_model( x_train, y_train, look_back, times_to_repeat=times_to_repeat) xg_reg, threshold_xgb = xgboost_classifier.create_model( x_train_supervised, y_train_supervised, times_to_repeat=times_to_repeat) rf, threshold_rf = RF.create_model(x_train_supervised, y_train_supervised, times_to_repeat=times_to_repeat) if DATASET_TYPE == INJECTED_DATASET or DATASET_TYPE == OLD_DATASET: scenarios = [ FIRST_SCENARIO, SECOND_SCENARIO, THIRD_SCENARIO, FOURTH_SCENARIO, FIFTH_SCENARIO, SIXTH_SCENARIO, SEVENTH_SCENARIO, EIGHTH_SCENARIO, NINTH_SCENARIO, ALL_SCENARIOS ] # scenarios = [ALL_SCENARIOS] for scenario in scenarios: print("-------------------", scenario, "scenario --------------------------") experiment(lstm, threshold_lstm, xg_reg,