Example #1
0
def IKinBodyIterates(Blist, M, T, thetalist0, eomg, ev):
    """
    Computes inverse kinematics in the body frame for an open chain robot and saves the report in a log.txt file

    :param Blist: The joint screw axes in the end-effector frame when the
                  manipulator is at the home position, in the format of a
                  matrix with axes as the columns
    :param M: The home configuration of the end-effector
    :param T: The desired end-effector configuration Tsd
    :param thetalist0: An initial guess of joint angles that are close to
                       satisfying Tsd
    :param eomg: A small positive tolerance on the end-effector orientation
                 error. The returned joint angles must give an end-effector
                 orientation error less than eomg
    :param ev: A small positive tolerance on the end-effector linear position
               error. The returned joint angles must give an end-effector
               position error less than ev
    :return thetalist: Joint angles that achieve T within the specified
                       tolerances,
    :return success: A logical value where TRUE means that the function found
                     a solution and FALSE means that it ran through the set
                     number of maximum iterations without finding a solution
                     within the tolerances eomg and ev.
    Uses an iterative Newton-Raphson root-finding method.
    The maximum number of iterations before the algorithm is terminated has
    been hardcoded in as a variable called maxiterations. It is set to 20 at
    the start of the function, but can be changed if needed.
    """
    thetalist = np.array(thetalist0).copy()
    thetamatrix = thetalist.T
    i = 0
    maxiterations = 20
    Tsb = mr.FKinBody(M, Blist, thetalist)
    Vb = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(Tsb), T)))
    omg_b_norm = np.linalg.norm([Vb[0], Vb[1], Vb[2]])
    v_b_norm = np.linalg.norm([Vb[3], Vb[4], Vb[5]])
    err = omg_b_norm > eomg or v_b_norm > ev
    saveLog(i, thetalist, Tsb, Vb, omg_b_norm, v_b_norm)

    while err and i < maxiterations:
        thetalist = thetalist \
                    + np.dot(np.linalg.pinv(mr.JacobianBody(Blist, \
                                                         thetalist)), Vb)
        thetamatrix = np.vstack((thetamatrix, thetalist.T))
        i = i + 1
        Tsb = mr.FKinBody(M, Blist, thetalist)
        Vb = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(Tsb), T)))
        omg_b_norm = np.linalg.norm([Vb[0], Vb[1], Vb[2]])
        v_b_norm = np.linalg.norm([Vb[3], Vb[4], Vb[5]])
        err = omg_b_norm > eomg or v_b_norm > ev
        # print details to log.txt
        saveLog(i, thetalist, Tsb, Vb, omg_b_norm, v_b_norm, isappend="a")

    np.savetxt("iterates.csv", thetamatrix, delimiter=",")

    return (thetamatrix, not err)
Example #2
0
 def step_ik(self):
     # grab current joint angles and SE(3) target:
     q = self.q
     with self.mutex:
         g_sd = self.goal
     # Calculate transform from current EE pose to desired EE pose
     err = np.dot(mr.TransInv(mr.FKinBody(smr.M, smr.Blist, q)), g_sd)
     # now convert this to a desired twist
     Vb = mr.se3ToVec(mr.MatrixLog6(err))
     # calculate body Jacobian at current config
     J_b = mr.JacobianBody(smr.Blist, q)
     # now calculate an appropriate joint angle velocity:
     # qdot = np.dot(np.linalg.pinv(J_b), Vb)
     idim = J_b.shape[-1]
     qdot = np.dot(np.dot(np.linalg.inv(np.dot(J_b.T,J_b) + self.damping*np.eye(idim)), J_b.T), Vb)
     # increase velocity in each joint
     multiplier = 4
     qdot = qdot*multiplier
     ########Clip down algorithm
     # joint vel lim dict
     vel_lim = {'right_j0': 1.74, 'right_j1': 1.328, 'right_j2': 1.957, 'right_j3': 1.957, 'right_j4': 3.485, 'right_j5': 3.485, 'right_j6': 4.545}
     qdot_unclip = dict(zip(self.joint_names, qdot))
     qd_over_vel = [qd for qd in qdot_unclip if qdot_unclip[qd] > vel_lim[qd]]
     if qd_over_vel != []:
         print "joint limit reach in: ", qd_over_vel
         qd_vel_lim_min = min(qd_over_vel, key=qd_over_vel.get)
         f = 0.7
         qdot = qdot/qdot_unclip[qd_vel_lim_min]*vel_lim[qd_vel_lim_min]*f
         print "reduce to: ", qdot
         print "with limit: ", vel_lim
     self.qdot_dict = dict(zip(self.joint_names, qdot))
 def calc_joint_vel_2(self):
     """ Joint velocity command computation based on PI feedback loop.
     """
     Tbs = self.M0 # 
     Blist = self.Blist # 
     self.get_q_now()
     with self.mutex:
         q_now = self.q #1x7 mx
     with self.mutex:
         T_sd = self._get_goal_matrix() # 
     dT = self.get_dt()
     e = np.dot(r.TransInv(r.FKinBody(Tbs, Blist, q_now)), T_sd) # Modern robotics pp 230 22Nff
     # get Error vector.
     Xe = r.se3ToVec(r.MatrixLog6(e)) # shape -> [1, 2, 3, 4, 5, 6]
     dXe = Xe - self.last_error
     # numerical integration of the error
     if np.linalg.norm(self.int_err) < self.int_anti_windup:
         self.int_err += Xe # * dT
     # numerical differentiation of the error
     if dT > 0:
         self.der_err = dXe / dT
     Vb = np.dot(self.Kp, Xe) + np.dot(self.Ki, self.int_err) #+ np.dot(self.Kd, self.der_err) # Kp*Xe + Ki*intg(Xe) + Kd*(dXe/dt)
     Vb += self.get_feed_forward()
     # self.V_b = np.dot(self.Kp, self.X_e) + np.dot(self.Ki, self.int_err)
     self.J_b = r.JacobianBody(Blist, self.q)
     n = self.J_b.shape[-1] #Size of last row, n = 7 joints
     invterm = np.linalg.inv(np.dot(self.J_b.T, self.J_b) + pow(self.damping, 2)*np.eye(n)) # 
     self.q_dot = np.dot(np.dot(invterm, self.J_b.T),Vb) # It seems little bit akward...? >>Eq 6.7 on pp 233 of MR book
     self.q_dot = self.scale_joint_vel(self.q_dot)
     qdot_output = dict(zip(self.names, self.q_dot))
     self.limb.set_joint_velocities(qdot_output)
     # self.stop_oscillating()
     self.last_error = Xe
     self.last_time = self.current_time
     self._check_traj(dT)
Example #4
0
def IKinBodyIterates(Blist, M, T, thetas_guess, eomg, ev, max_iteration=20):
    thetas = np.array(thetas_guess).copy().astype(np.float)
    Tsd = np.array(T).copy().astype(np.float)
    success = False
    guesses = [thetas_guess]

    print("Initial Guess: {0}".format(thetas))

    for i in range(max_iteration):
        print("Iteration {0}\n".format(i))
        # Calculate space frame transform from end effector to desired position.
        Tsb = mr.FKinBody(M, Blist, thetas)
        print("joint vector: {0}".format(thetas))
        print("SE3 end effector config: \n{0}".format(Tsb))
        Tbd = np.linalg.inv(Tsb) @ Tsd
        # Twist in matrix form.
        Vb_se3 = mr.MatrixLog6(Tbd)
        Vb = mr.se3ToVec(Vb_se3)
        print("error twist: {0}".format(Vb))
        print("angular error magitude || omega_b ||: {0}".format(
            np.linalg.norm(Vb[0:3])))
        print("linear error magnitude || v_b ||: {0}".format(
            np.linalg.norm(Vb[3:6])))
        print("-------------------\n")
        # Check if result is a success.
        if np.linalg.norm(Vb[0:3]) < eomg and np.linalg.norm(Vb[3:6]) < ev:
            success = True
            break
        Jac = mr.JacobianBody(Blist, thetas)
        thetas = (thetas + np.linalg.pinv(Jac) @ Vb) % (2 * np.pi)
        guesses.append(thetas)

    return (thetas, success, np.array(guesses))
Example #5
0
    def __init__(self):
        rospy.loginfo("Creating VelocityController class")

        # Grab M0 and Blist from saywer_MR_description.py
        self.M0 = s.M #Zero config of right_hand
        self.Blist = s.Blist #6x7 screw axes mx of right arm
        
        # Shared variables
        self.mutex = threading.Lock()
        self.time_limit = rospy.get_param("~time_limit", TIME_LIMIT)
        self.damping = rospy.get_param("~damping", DAMPING)
        self.joint_vel_limit = rospy.get_param("~joint_vel_limit", JOINT_VEL_LIMIT)
        self.q = np.zeros(4)        # Joint angles
        self.qdot = np.zeros(4)     # Joint velocities
        self.T_goal = r.FKinBody(self.M0, self.Blist, self.q[0:3])
        
        self.isCalcOK = False
        # Subscriber
        self.joint_states_sub = rospy.Subscriber('/open_manipulator/joint_states', JointState, self.joint_states_cb)
        self.ref_pose_sub = rospy.Subscriber('/teacher/ik_vel/', Pose, self.ref_pose_cb)
        # Command publisher
        self.j1_pos_command_pub = rospy.Publisher('/open_manipulator/joint1_position/command', Float64, queue_size=3)
        self.j2_pos_command_pub = rospy.Publisher('/open_manipulator/joint2_position/command', Float64, queue_size=3)
        self.j3_pos_command_pub = rospy.Publisher('/open_manipulator/joint3_position/command', Float64, queue_size=3)
        self.j4_pos_command_pub = rospy.Publisher('/open_manipulator/joint4_position/command', Float64, queue_size=3)

        self.joint_pos_command_to_dxl_pub = rospy.Publisher('/open_manipulator/joint_position/command', Float64MultiArray, queue_size=3)

        self.r = rospy.Rate(100)
        while not rospy.is_shutdown():
            self.calc_joint_vel()
            self.r.sleep()
    def step_ik(self):
        # grab current joint angles and SE(3) target:
        q = self.q
        with self.mutex:
            g_sd = self.goal
        # Calculate transform from current EE pose to desired EE pose
        err = np.dot(mr.TransInv(mr.FKinBody(smr.M, smr.Blist, q)), g_sd)
        # now convert this to a desired twist
        Vb = mr.se3ToVec(mr.MatrixLog6(err))
        # calculate body Jacobian at current config
        J_b = mr.JacobianBody(smr.Blist, q)
        # now calculate an appropriate joint angle velocity:
        # qdot = np.dot(np.linalg.pinv(J_b), Vb)
        idim = J_b.shape[-1]
        qdot = np.dot(np.dot(np.linalg.inv(np.dot(J_b.T,J_b) + self.damping*np.eye(idim)), J_b.T), Vb)
        # increase velocity in each joint
        multiplier = 4
        # print np.amax(qdot), " --to--> ", np.amax(qdot*multiplier)
        qdot = qdot*multiplier
        # clip down velocity in each joint
        if np.amax(qdot) > self.joint_vel_limit:
            qdot = qdot/np.amax(qdot)*self.joint_vel_limit
        names = ['right_j0', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6']
        # print "max vel joint : ", names[qdot.index(np.amax(qdot))], " : ", qdot[qdot.index(np.amax(qdot))]
        # print "max vel joint : ", names[np.where(qdot == np.amax(qdot))[0]], " : ", qdot[np.where(qdot == np.amax(qdot))[0]]

        if np.amax(qdot) > self.joint_vel_limit:
            print "joint limit reach !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
    
        self.q_sim += self.step_scale*qdot
        self.joint_cmd.velocity = qdot 
        return
    def step_ik(self,tdat):
        with self.mutex:
            g_sd = self.goal
            current_js = self.js
        # Calculate transform from current EE pose to desired EE pose
        err = np.dot(mr.TransInv(mr.FKinBody(smr.M, smr.Blist, current_js)), g_sd)
        # now convert this to a desired twist
        Vb = mr.se3ToVec(mr.MatrixLog6(err))
        if (self.ik_begin == True and self.xPos < .55 and self.xPos > -.7):
            Vb[3] = self.vely
        elif (self.ik_begin == True and self.xPos > .55 or self.xPos < -.7):
            self.ik_begin = False
            self.slow = True
        if (self.vely == 0):
            self.ik_begin = False
            self.slow = True
        if (self.count < pi/2 and self.slow == True):
            Vb[3] = self.xdot*cos(self.count) + Vb[3]*sin(self.count/4)
            self.count = self.count + .015
        elif (self.count >= pi/2 and self.count < 2*pi and self.slow == True):
            Vb[3] =  Vb[3]*sin(self.count/4)
            self.count = self.count + .015
        elif (self.count >= 2*pi and self.slow == True):
            self.count = 0
            self.slow = False



        # calculate body Jacobian at current config
        J_b = mr.JacobianBody(smr.Blist, current_js)
        # now calculate an appropriate joint angle velocity:
        qdot = np.dot(np.linalg.pinv(J_b), Vb)
        joint_command = {"right_j0":qdot[0], "right_j1":qdot[1], "right_j2":qdot[2],
                            "right_j3": qdot[3], "right_j4":qdot[4], "right_j5":qdot[5], "right_j6":qdot[6]}
        self.limb.set_joint_velocities(joint_command)
Example #8
0
def jacobsLadder(current_config):
    """
    Parameters
    ----------
    phi, x, y :                     robot chassis configuration
    j1, j2, j3, j4, j5              arm configuration
    w1, w2, w3, w4                  wheel speed configuration
    gripper_state :                 0=open; 1=closed.

    Returns
    -------
    x :                             Forward kinematics
    Ja, Jb :                        Jacobian matricies
    """
    phi, x, y, j1, j2, j3, j4, j5, w1, w2, w3, w4, g = current_config
    thetalist = np.array([j1, j2, j3, j4, j5])
    # Tsb = np.array([[]])
    Tsb = np.array([[np.cos(phi), -np.sin(phi), 0, x],
                    [np.sin(phi), np.cos(phi), 0, y], [0, 0, 1, 0.0963],
                    [0, 0, 0, 1]])

    Tb0 = np.array([[1, 0, 0, 0.1662], [0, 1, 0, 0], [0, 0, 1, 0.0026],
                    [0, 0, 0, 1]])

    Ja = mr.JacobianBody(Blist, thetalist)
    T0e = mr.FKinBody(M, Blist, thetalist)
    X = np.dot(np.dot(Tsb, Tb0), T0e)
    Jb = np.dot(mr.Adjoint(np.dot(la.inv(T0e), Tb0)), H)

    return X, Ja, Jb
Example #9
0
    def gen_joints_list(self, input_pose):
        self.limb_interface.move_to_joint_positions({'head_pan':0.379125, 'right_j0':-0.020025390625 , 'right_j1':0.8227529296875, 'right_j2':-2.0955126953125, 'right_j3':2.172509765625, 'right_j4':0.7021171875, 'right_j5' : -1.5003603515625, 'right_j6' : -2.204990234375}) 

        # self.running_flag = True
        tol = 0.001 #1 mm
        ret_list = []
        while (abs(self.ep.pose.position.x - input_pose.position.x) > tol) and (abs(self.ep.pose.position.y - input_pose.position.y) > tol):
            # set_goal_from_pose part
            p = np.array([input_pose.position.x, input_pose.position.y,
                          input_pose.position.z])
            q = np.array([input_pose.orientation.x, input_pose.orientation.y,
                          input_pose.orientation.z, input_pose.orientation.w])
            goal = tr.euler_matrix(*tr.euler_from_quaternion(q))
            goal[0:3,-1] = p   
            # actual_js_cb: get the actual joint state
            q = self.q
            with self.mutex:
                g_sd = goal        

            # Calculate transform from current EE pose to desired EE pose
            err = np.dot(mr.TransInv(mr.FKinBody(smr.M, smr.Blist, q)), g_sd)
            # now convert this to a desired twist
            Vb = mr.se3ToVec(mr.MatrixLog6(err))
            # calculate body Jacobian at current config
            J_b = mr.JacobianBody(smr.Blist, q)
            # now calculate an appropriate joint angle velocity:
            # qdot = np.dot(np.linalg.pinv(J_b), Vb)
            idim = J_b.shape[-1]
            qdot = np.dot(np.dot(np.linalg.inv(np.dot(J_b.T,J_b) + self.damping*np.eye(idim)), J_b.T), Vb)
            # increase velocity in each joint
            multiplier = 4
            qdot = qdot*multiplier
            ########Clip down algorithm
            # joint vel lim dict
            vel_lim = {'right_j0': 1.74, 'right_j1': 1.328, 'right_j2': 1.957, 'right_j3': 1.957, 'right_j4': 3.485, 'right_j5': 3.485, 'right_j6': 4.545}
            qdot_unclip = dict(zip(self.joint_names, qdot))
            qd_over_vel = [[qd, qdot_unclip[qd]] for qd in qdot_unclip if qdot_unclip[qd] > vel_lim[qd]]
            if qd_over_vel != []:
                print "joint limit reach in: ", qd_over_vel
                # qd_over_vel = dict(zip(qd_over_vel, qdot_unclip[qd]))
                # qd_vel_lim_min = min(qd_over_vel, key=qd_over_vel.get)
                qd_vel_lim_val = [qd_over_vel[i][1] for i in range(len(qd_over_vel))]
                qd_vel_lim_min = min(qd_vel_lim_val)
                f = 0.7
                # qdot = qdot/qdot_unclip[qd_vel_lim_min]*vel_lim[qd_vel_lim_min]*f
                qdot = qdot/qd_vel_lim_min*qd_vel_lim_min*f
                print "reduce to: ", qdot
                print "with limit: ", vel_lim
            qdot_dict = dict(zip(self.joint_names, qdot))
            self.limb_interface.set_joint_velocities(qdot_dict)
            print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1\n", qdot_dict
            ret_list.append(qdot_dict)
            

        self.limb_interface.move_to_joint_positions({'head_pan':0.379125, 'right_j0':-0.020025390625 , 'right_j1':0.8227529296875, 'right_j2':-2.0955126953125, 'right_j3':2.172509765625, 'right_j4':0.7021171875, 'right_j5' : -1.5003603515625, 'right_j6' : -2.204990234375}) 
        
        return ret_list
Example #10
0
def IKinBodyIterates(Blist, M, T, thetalist0, eomg, ev):
    """
    This function was cloned from the Modern Robotics library
    Modifications to the function track robot configuration and error
    """

    # Store information to track changes (this is new)
    # new information is put into an array
    j_history = []
    se3_history = []
    error_twist_history = []
    ang_err_mag_history = []
    lin_err_mag_history = []

    thetalist = np.array(thetalist0).copy()
    i = 0
    maxiterations = 20

    Vb = mr.se3ToVec(
        mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, thetalist)),
                             T)))
    err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg or np.linalg.norm(
        [Vb[3], Vb[4], Vb[5]]) > ev

    while err and i < maxiterations:

        # changes are appended to corresponding array
        j_history.append(thetalist)
        se3_history.append(mr.FKinBody(M, Blist, thetalist))
        error_twist_history.append(Vb)
        ang_err_mag_history.append(np.linalg.norm([Vb[0], Vb[1], Vb[2]]))
        lin_err_mag_history.append(np.linalg.norm([Vb[3], Vb[4], Vb[5]]))

        thetalist = thetalist + np.dot(
            np.linalg.pinv(mr.JacobianBody(Blist, thetalist)), Vb)
        i = i + 1
        Vb = mr.se3ToVec(
            mr.MatrixLog6(
                np.dot(mr.TransInv(mr.FKinBody(M, Blist, thetalist)), T)))
        err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg or np.linalg.norm(
            [Vb[3], Vb[4], Vb[5]]) > ev
    return (thetalist, not err, j_history, se3_history, error_twist_history,
            ang_err_mag_history, lin_err_mag_history)
Example #11
0
def Essential_function(phi, x, y, a1, a2, a3, a4, a5):
    Tsb_q = np.array([[cos(phi), -sin(phi), 0, x], [sin(phi), cos(phi), 0, y], [0, 0, 1, 0.0963], [0, 0, 0, 1]])
    thetalist = np.array([a1, a2, a3, a4, a5])
    T0e_theta = mr.FKinBody(M0e, Blist, thetalist)
    x_q_theta = np.dot(np.dot(Tsb_q, Tb_0), T0e_theta)
    jarm = mr.JacobianBody(Blist, thetalist)
    F = np.array([[0, 0, 0, 0], [0, 0, 0, 0],[-1/(l+w), 1/(l+w), 1/(l+w), -1/(l+w)], [1, 1, 1, 1], [-1, 1, -1, 1], [0, 0, 0, 0]])
    jbase = np.dot(mr.Adjoint(np.dot(mr.TransInv(T0e_theta), mr.TransInv(Tb_0))), F)

    return x_q_theta, jarm, jbase #X, Jb, Jbase is return from here
Example #12
0
 def ref_pose_cb(self, some_pose): # Takes target pose, returns ref se3
     p = np.array([some_pose.position.x, some_pose.position.y, some_pose.position.z])
     
     quat = np.array([some_pose.orientation.x, some_pose.orientation.y, some_pose.orientation.z, some_pose.orientation.w])
     goal_tmp = tr.compose_matrix(angles=tr.euler_from_quaternion(quat, 'sxyz'), translate=p)
     
     with self.mutex:
         goal_tmp = r.FKinBody(self.M0, self.Blist, np.array([0.0, 0.0, 0.0, 1.57]))
         goal_tmp[0:3,3] = p
     with self.mutex:
         self.T_goal = goal_tmp
def youBot_Tbe(thetaList):
    """Computes the transform of youBot End effector in robot base frame

    :param configuration: A 5-vector representing the current configuration of the robot arm. 
                                5 variables for the arm configuration (J1, J2, J3, J4, J5), 
    :return: Transform of End effector in base frame
    """

    T0e = mr.FKinBody(M, Blist, thetaList)
    Tbe = np.dot(Tb0, T0e)
    return Tbe
def IKinBodyIterates(Blist, M, T, thetalist0, eomg, ev):
    thetalist = np.array(thetalist0).copy()
    i = 0
    maxiterations = 20
    Vb = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                      thetalist)), T)))
    err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
          or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev

    while err and i < maxiterations:
        thetalist = thetalist \
                    + np.dot(np.linalg.pinv(mr.JacobianBody(Blist, \
                                                         thetalist)), Vb)
        i = i + 1
        Vb \
        = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                       thetalist)), T)))
        err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
              or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev

    return (thetalist, not err, i)
Example #15
0
    def ctrl_r(self, X_d):
        # Get current joint positions
        # joint_states are sent from Sawyer with names:
        # [head_pan, right_j0, right_j1, right_j2, right_j3, right_j4,
        #  right_j5, right_j6, torso_t0]
        # Before calculation, we need to remove the first and last elements
        cur_theta_list = np.delete(self.cur_config, 0)
        cur_theta_list = np.ndarray.tolist(np.delete(cur_theta_list, -1))

        # Get desired end endeff transform
        # EndEff frame initially in displacement-quaternion form...
        p_d, Q_d = mr.TFtoMatrix(X_d)
        # ...for ease of use with the Modern Robotics text, the frame is
        # changed to transform matrix form using the tflistener library
        X_d = self.tf_lis.fromTranslationRotation(p_d, Q_d)

        # Current EndEff tranform is found using forward kinematics
        X_cur = mr.FKinBody(self.M, self.B_list, cur_theta_list)

        # EndEff transform error X_e is found from [X_e] = log(X^(-1)X_d)
        X_e = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(X_cur), X_d)))

        # Find integral error
        ## Can induce instability, use with caution!
        self.int_err = (self.int_err + X_e) * (0.5 / 20)
        # Hard limit each int_err element to 0.5 to prevent runaway
        for i in range(len(self.int_err)):
            err_i = self.int_err[i]
            if abs(err_i) > 0.5:
                self.int_err[i] = np.sign(err_i) * 0.5

        # Calculate body twist command from V_b = K_p . X_e + K_i . int(X_e)
        V_b = np.dot(self.Kp, X_e) + np.dot(self.Ki, self.int_err)
        # Calculate body Jacobian from robot_des and current joint positions
        J_b = mr.JacobianBody(self.B_list, cur_theta_list)

        # Calculate joint velocity command from theta_dot = pinv(J_b)V_b
        J_b_pinv = np.linalg.pinv(J_b)
        theta_dot = np.dot(J_b_pinv, V_b)

        # Limit joint speed to 0.6 rad/sec
        for i in range(len(theta_dot)):
            if abs(theta_dot[i]) > 0.6:
                theta_dot[i] = np.sign(theta_dot[i]) * 0.6

        # Reinsert a 0 joint velocity command for the head_pan joint
        theta_dot = np.insert(theta_dot, 1, 0)
        # Convert to list because JointCommand messages are PICKY
        self.joint_ctrl_msg.velocity = np.ndarray.tolist(theta_dot)
        # Publish the JointCommand message
        self.pub_joint_ctrl_msg()
Example #16
0
 def find_X(self, configuration):  #X is equal to Tse
     #input - configuration (phi, x, y, theta1, theta2, theta3, theta4, theta5)
     phi = configuration[0]
     x = configuration[1]
     y = configuration[2]
     Tsb = KukaYoubot.calc_Tsb(phi, x, y)
     thetalist = np.array([
         configuration[3], configuration[4], configuration[5],
         configuration[6], configuration[7]
     ])
     T0e = mr.FKinBody(KukaYoubot.M0e, KukaYoubot.Blist, thetalist)
     Ts0 = np.matmul(Tsb, KukaYoubot.Tb0)
     Tse = np.round(np.matmul(Ts0, T0e), 5)
     return Tse
Example #17
0
def IKinBodyIterates(Blist, M, T, thetalist0, eomg, ev):
    thetalist = thetalist0
    i = 0
    Vb = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                      thetalist)), T)))
    err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
          or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev

    max_i = 20
    jointVecIter = thetalist
    while (err and i < max_i):
        thetalist = thetalist \
                    + np.dot(np.linalg.pinv(mr.JacobianBody(Blist, \
                                                         thetalist)), Vb)

        jointVecIter = np.vstack(
            [jointVecIter,
             thetalist])  #joining present joining angles to previous
        i = i + 1
        print("Iteration  ", i, " :")
        print("joint vector  :\n", thetalist)
        print("SE(3) end-effector config  : \n",
              mr.FKinBody(M, Blist, thetalist))
        Vb \
        = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                       thetalist)), T)))
        print("error twist V_b : \n", Vb)
        err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
              or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev
        print("angular error magnitude ||omega_b|| : ",
              np.linalg.norm([Vb[0], Vb[1], Vb[2]]))
        print("linear error magnitude ||v_b|| : ",
              np.linalg.norm([Vb[3], Vb[4], Vb[5]]))

    np.savetxt("iterator.csv", jointVecIter,
               delimiter=",")  # Saving to txt format
    return (thetalist, not err)
    def calc_joint_vel(self):
        rospy.logdebug("Calculating joint velocities...")

        # Convert Slist to Blist
        Tbs = r.TransInv(self.M0)
        Blist = np.zeros(self.Slist.shape) #6x7 mx of 0's
        for item, screw in enumerate(self.Slist.T): #index = 7, screw = 6x1
            Blist[:, item] = np.dot(r.Adjoint(Tbs), screw.T)

        # Current joint angles
        self.get_q_now()
        with self.mutex:
            q_now = self.q #1x7 mx

        # Desired config: base to desired - Tbd
        with self.mutex:
            T_sd = self.T_goal

        # Find transform from current pose to desired pose, error
        e = np.dot(r.TransInv(r.FKinBody(self.M0, Blist, q_now)), T_sd)

        # Desired TWIST: MatrixLog6 SE(3) -> se(3) exp coord
        Vb = r.se3ToVec(r.MatrixLog6(e))
        # Construct BODY JACOBIAN for current config
        Jb = r.JacobianBody(Blist, q_now) #6x7 mx

        # Desired ang vel - Eq 5 from Chiaverini & Siciliano, 1994
        # Managing singularities: naive least-squares damping
        n = Jb.shape[-1] #Size of last row, n = 7 joints
        invterm = np.linalg.inv(np.dot(Jb.T, Jb) + pow(self.damping, 2)*np.eye(n))
        qdot_new = np.dot(np.dot(invterm,Jb.T),Vb)

        # Scaling joint velocity
        minus_v = abs(np.amin(qdot_new))
        plus_v = abs(np.amax(qdot_new))
        if minus_v > plus_v:
            scale = minus_v
        else:
            scale = plus_v
        if scale > self.joint_vel_limit:
            qdot_new = 1.0*(qdot_new/scale)*self.joint_vel_limit
        self.qdot = qdot_new #1x7

        # Constructing dictionary
        qdot_output = dict(zip(self.names, self.qdot))

        # Setting Baxter right arm joint velocities
        self.arm.set_joint_velocities(qdot_output)
        return
Example #19
0
    def calc_jacobian(self,q):
        """
        calculating the jacobian matrix 
        """
        T0e = mr.FKinBody(self.allMatrix.M0e,
                          self.allMatrix.Blist,
                          q[3:])

        Teb = np.matmul(mr.TransInv(T0e),mr.TransInv(self.allMatrix.Tb0))
        Ad = mr.Adjoint(Teb)
        Jbase = np.matmul(Ad,self.allMatrix.F6)
        J_arm = mr.JacobianBody(self.allMatrix.Blist, q[3:])
        J_e = np.concatenate((Jbase, J_arm),1)
        Je_pinv = np.linalg.pinv(J_e,1e-4)
        return Je_pinv, mr.TransInv(Teb)
Example #20
0
def Convert(phi,x,y,j1,j2,j3,j4,j5):
	"""
	Given the current configurations of robot chassis and joints,
	return the Jacobian matrices.
	"""

	thetalist = np.array([j1,j2,j3,j4,j5])
	Tsb = np.array([[cos(phi), -sin(phi), 0, x],[sin(phi), cos(phi), 0, y],[0, 0, 1, 0.0963],[0, 0, 0, 1]])
	Tb0 = np.array([[1, 0, 0, 0.1662],[0, 1, 0, 0],[0, 0, 1, 0.0026],[0, 0, 0, 1]])
	Ja = mr.JacobianBody(B,thetalist)
	T0e = mr.FKinBody(M0e,B,thetalist)
	X = np.dot(np.dot(Tsb,Tb0),T0e)
	Jb = np.dot(mr.Adjoint(np.dot(np.linalg.inv(T0e),Tb0)), F6)

	return X,Ja,Jb
Example #21
0
    def calc_joint_vel(self):

        rospy.logdebug("Calculating joint velocities...")

        # Body stuff
        Tbs = self.M0
        Blist = self.Blist

        # Desired config: base to desired - Tbd
        with self.mutex:
            T_sd = self.T_goal
            q_now = self.q

        T_cur = r.FKinBody(Tbs, Blist, q_now)
        
        e = np.zeros(6)
        e[0:3] = self.get_phi(T_sd[0:3,0:3],T_cur[0:3,0:3])
        e[3:6] = T_sd[0:3,3] - T_cur[0:3,3]
        # Construct BODY JACOBIAN for current config
        Jb = r.JacobianBody(Blist, q_now) #6x7 mx
        Jv = Jb[3:6,:]

        # Desired ang vel - Eq 5 from Chiaverini & Siciliano, 1994
        # Managing singularities: naive least-squares damping
        invterm = np.linalg.inv(np.dot(Jv,Jv.T)+ pow(self.damping, 2)*np.eye(3))
        qdot_new = np.dot(np.dot(Jv.T, invterm),e[3:6])
        
        # Scaling joint velocity
        minus_v = abs(np.amin(qdot_new))
        plus_v = abs(np.amax(qdot_new))
        if minus_v > plus_v:
            scale = minus_v
        else:
            scale = plus_v
        if scale > self.joint_vel_limit:
            qdot_new = 2.0*(qdot_new/scale)*self.joint_vel_limit
        self.qdot = qdot_new #1x7
        
        dt = 0.01

        q_desired = q_now + qdot_new * dt
        self.j1_pos_command_pub.publish(q_desired[0])
        self.j2_pos_command_pub.publish(q_desired[1])
        self.j3_pos_command_pub.publish(q_desired[2])
        self.j4_pos_command_pub.publish(q_desired[3])
        self.joint_pos_command_to_dxl_pub.publish(data=q_desired)

        return
def youBot_selfCollisionCheck(thetaList):
    """Checks if the provided robot arm configuration is in self collision with youBot

    :param configuration: A 5-vector representing the current configuration of the robot arm 
                                5 variables for the arm configuration (J1, J2, J3, J4, J5), 
    :return: A boolean value, status
                    True - No self collision.
                    False - Self collision

    This funtion checks whether the end effector of the youBot arm is not in restricted / self colliding 
    areas. The restricted area is designed such that, if the end effector position is in a non restricted area, 
    the arm will not be in self collision with the robot or the arm links themselves. 

    The restricted area is modeled as a combination of a cuboid (representing robot base) 
    and a cylinder (representing arm base)
    """
    noCollision = True

    T0e = mr.FKinBody(M, Blist, thetaList)
    r, [x, y, z] = mr.TransToRp(T0e)

    # T0e position must not be in the cylinder region of the robot arm base.
    # Cylinder region radius : 0.1562m. Height 0.3604m
    min_radius = 0.1562
    min_height = 0.3604
    radial_distance = math.sqrt(math.pow(x, 2) + math.pow(y, 2))
    if (radial_distance < min_radius) and (z < min_height):
        noCollision = False
        return noCollision

    Tbe = np.dot(Tb0, T0e)
    r, [x, y, z] = mr.TransToRp(T0e)
    # Tbe position must not be in the cuboid region of the youBot base
    # Cuboid region coordinates:
    x_min = -0.35
    x_max = +0.35
    y_min = -0.336
    y_max = +0.336
    z_min = 0
    z_max = 0.175

    if ((x_min < x) and
        (x < x_max)) and ((y_min < y) and
                          (y < y_max)) and ((z_min < z and z < z_max)):
        noCollision = False
        return noCollision

    return noCollision
Example #23
0
def Fkin(config, Baxis_mat, M0e, Tb0):
	# calculate forward kinematics of Kuka youbot
	Baxis_mat = np.array(Baxis_mat)
	config = np.array(config)
	M0e = np.array(M0e)
	Tb0 = np.array(Tb0)
	# Tsb the description of the chassis frame with respect to the spatial frame s
	chassis_theta ,chassis_x, chassis_y = config[0], config[1], config[2]
	cos_th = np.cos(chassis_theta)
	sin_th = np.sin(chassis_theta)
	Tsb = [[cos_th, -sin_th, 0, chassis_x], [sin_th, cos_th, 0, chassis_y], [0, 0, 1, 0.0963],[0, 0, 0, 1]]
	# T0e is the forward kinematics of the arm, which gives ends-effector description wrt the base of the arm frame 0
	arm_joints_value = config[3:8]
	T0e = mr.FKinBody(M0e, Baxis_mat, arm_joints_value)
	Tse = Tsb @ Tb0 @ T0e
	return Tse
Example #24
0
def FeedbackControl(X, XD, XDN, KP, KI, dt):

    XDI = np.linalg.inv(XD)
    XDDN = np.dot(XDI, XDN)
    se3VD = (1 / dt) * mr.MatrixLog6(
        XDDN)  # Calculating Feedforward Twist in desired frame
    VD = mr.se3ToVec(se3VD)

    XI = np.linalg.inv(X)
    XIXD = np.dot(
        XI, XD
    )  # Calculating Adjoint for converting twist in desired frame to end effector frame
    A = mr.Adjoint(XIXD)

    se3XE = mr.MatrixLog6(XIXD)
    XE = mr.se3ToVec(se3XE)  # Error twist

    I = dt * XE
    V = np.dot(A, VD) + np.dot(KP, XE) + np.dot(
        KI, I)  # Twist in end effector frame using PID controller
    #V=np.dot(KP,XE) + np.dot(KI,I)

    T0E = mr.FKinBody(M, Blist, thetalist)
    T0EI = np.linalg.inv(T0E)
    TB0I = np.linalg.inv(TB0)
    TEB = np.dot(T0EI, TB0I)
    C = mr.Adjoint(TEB)

    FM = 0.011875 * np.array([
        [-2.5974, 2.5974, 2.5974, -2.5974],
        [1, 1, 1, 1],
        [-1, 1, -1, 1],
    ])

    F6 = np.zeros((6, 4))
    F6[2:5, :] = FM

    JB = np.dot(C, F6)  # Calculating Base Jacobian
    JA = mr.JacobianBody(Blist, thetalist)  # Calculating Arm Jacobian

    JE = np.zeros((6, 9))
    JE[:, 0:5] = JA
    JE[:, 5:9] = JB

    JEI = np.linalg.pinv(JE)
    Matrix = np.dot(JEI, V)  # Calculating speed and angular velocity
    return Matrix
Example #25
0
def getActConfig(curConfig):
    l = 0.47 / 2
    w = 0.3 / 2
    r = 0.0475
    theta_cur = np.array(curConfig[3:8])
    phi, x, y = np.array(curConfig[0:3])
    F = (r / 4) * np.array(
        [[-1 / (l + w), 1 / (l + w), 1 / (l + w), -1 /
          (l + w)], [1, 1, 1, 1], [-1, 1, -1, 1]])
    Blist, M, Tb0 = getConsts()

    T0e = mr.FKinBody(M, Blist, theta_cur)
    Tsb = np.array([[m.cos(phi),-m.sin(phi),0,x],\
                    [m.sin(phi),m.cos(phi),0,y],\
                    [0,0,1,0.0963],\
                    [0,0,0,1]])

    X = np.dot(Tsb, np.dot(Tb0, T0e))
    return X, theta_cur, F
Example #26
0
def getPsuedo(F, theta_cur):
    Blist, M, Tb0 = getConsts()
    T0e = mr.FKinBody(M, Blist, theta_cur)

    Ja = mr.JacobianBody(Blist, theta_cur)
    F6 = np.vstack([
        np.zeros(len(F[0])),
        np.zeros(len(F[0])), F[0], F[1], F[2],
        np.zeros(len(F[0]))
    ])
    Jb = np.dot(np.dot(mr.Adjoint(np.linalg.inv(T0e)), \
                       mr.Adjoint(np.linalg.inv(Tb0))),\
                F6)
    Je = np.c_[Jb, Ja]

    pJe = np.linalg.pinv(Je, 0.001)

    # print('Je:',Je)
    # print('theta:',theta_cur)
    return pJe, Ja, Jb
    def ctrl_r(self):
        self.cur_theta_list = np.delete(self.main_js.position, 1)
        self.X_d = self.tf_lis.fromTranslationRotation(self.p_d, self.Q_d)
        self.X = mr.FKinBody(self.M, self.B_list, self.cur_theta_list)
        self.X_e = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(self.X), self.X_d)))
        self.int_err = (self.int_err + self.X_e) * (0.5/20)
        # hard limit int_err elements to 0.5 per to prevent int_err runaway
        for i in range(len(self.int_err)):
            err_i = self.int_err[i]
            if abs(err_i) > 0.5:
                self.int_err[i] = np.sign(err_i) * 0.5
        self.V_b = np.dot(self.Kp, self.X_e) + np.dot(self.Ki, self.int_err)
        self.J_b = mr.JacobianBody(self.B_list, self.cur_theta_list)
        self.theta_dot = np.dot(np.linalg.pinv(self.J_b), self.V_b)
        for i in range(len(self.theta_dot)):
            if abs(self.theta_dot[i]) > 2:
                self.theta_dot[i] = np.sign(self.theta_dot[i])*2

        self.delt_theta = self.theta_dot*(1.0/20)
        self.delt_theta = np.insert(self.delt_theta, 1, 0)
        self.main_js.position += self.delt_theta
Example #28
0
 def __init__(self):
     self.angles = [0,0,pi/2,-pi/2,pi/2,pi/2,pi/2+sin(radians(10)) ]
     self.vely = 0
     self.ik_begin = False
     self.goal = mr.FKinBody(smr.M,smr.Blist,self.angles)
     self.goal[0:3,0:3] = np.array([[0,-1,0],[1,0,0],[0,0,1]])
     self.js = []
     self.limb = intera_interface.Limb("right")
     self.start_angles = {"right_j0":self.angles[0], "right_j1":self.angles[1], "right_j2":self.angles[2],
                         "right_j3": self.angles[3], "right_j4":self.angles[4], "right_j5":self.angles[5], "right_j6":self.angles[6]}
     self.limb.move_to_joint_positions(self.start_angles)
     self.mutex = threading.Lock()
     self.yp = rospy.Subscriber("yPoint", Point, self.Pnt)
     self.jss = rospy.Subscriber("/robot/joint_states", JointState,self.get_js)
     self.tim = rospy.Timer(rospy.Duration(1/100.), self.step_ik)
     self.key = rospy.Timer(rospy.Duration(1/10.), self.key_press)
     self.status = rospy.Publisher("reset_control",String, queue_size=3)
     self.xdot = 0
     self.count = 0
     self.slow = True
     self.xPos = -.2075
def jacobianify(chassis_phi, chassis_x, chassis_y, J1, J2, J3, J4, J5):
    """
    Converts the robot configuration into Jacobian matrices
    chassis_phi ... J5: robot configuration
    X: current actual end-effector configuration
    J_arm: Jacobian of arm
    J_chassis: Jacobian of chassis/base
    """
    arm_config = np.array([J1, J2, J3, J4, J5])
    T0e = mr.FKinBody(M0e, screw, arm_config)
    Tsb = np.array([[np.cos(chassis_phi), -np.sin(chassis_phi), 0, chassis_x],
                    [np.sin(chassis_phi),
                     np.cos(chassis_phi), 0, chassis_y], [0, 0, 1, 0.0963],
                    [0, 0, 0, 1]])
    Ts0 = np.matmul(Tsb, Tb0)  #np.dot(Tsb, Tb0)
    X = np.matmul(Ts0, T0e)  #np.dot(Ts0, T0e)
    J_arm = mr.JacobianBody(screw, arm_config)
    #Jc_pre = np.linalg.inv(T0e),Tb0
    #J_chassis = np.dot(mr.Adjoint(np.dot(np.linalg.inv(T0e),Tb0)), config_6)
    J_chassis = np.matmul(mr.Adjoint(np.linalg.inv(np.matmul(Tb0, T0e))),
                          config_6)
    return X, J_arm, J_chassis
Example #30
0
def get_jacobian(Baxis_mat, arm_joints_value, F_matrix, M0e, Tb0):
	Baxis_mat = np.array(Baxis_mat)
	arm_joints_value = np.array(arm_joints_value)
	# the F_matrix will be weighted by wheels_influence_factor
	# if the value if this factor is large, the pseudo inverse will output larger wheel speeds
	F_matrix = np.array(F_matrix)*(wheels_influence_factor)
	M0e = np.array(M0e)
	Tb0 = np.array(Tb0)

	T0e = mr.FKinBody(M0e, Baxis_mat, arm_joints_value)
	Teb = mr.TransInv(Tb0 @ T0e)
	# constituting base jacobian or F6(spatial) matrix relating the base wheel speed to the end-effector speed
	_ ,cols = F_matrix.shape
	z_vector = np.zeros((1, cols))
	F_matrix = np.vstack((z_vector, z_vector, F_matrix, z_vector))
	Base_Jacobian = mr.Adjoint(Teb) @ F_matrix
	# constituting the arm jacobian
	Arm_Jacobian = mr.JacobianBody(Baxis_mat, arm_joints_value)

	jacobian = np.hstack((Base_Jacobian, Arm_Jacobian))

	return jacobian