Example #1
0
def method_name(gray):
    a, b, c = modify.point_classification_new(gray, 1, 1, 1)
    for x in range(len(a)):
        print(gray[a[x][0], a[x][1]], end=" ")
        print(a[x], end=" ")
    print()
    for x in range(len(b)):
        print(gray[b[x][0], b[x][1]], end=" ")
        print(b[x], end=" ")
    print()
    for x in range(len(c)):
        print(gray[c[x][0], c[x][1]], end=" ")
        print(c[x], end=" ")
    print()
Example #2
0
def fix_noise(src1, tag, noise_num):
    src = src1.copy()
    for i in range(tag.shape[0]):
        for j in range(tag.shape[1]):
            if tag[i, j] > 1:
                a_sum = 0
                a_num = 0
                b_sum = 0
                b_num = 0
                minn, a, b = modify.point_classification_new(src1, i, j, 1)
                for aa in a:
                    # if tag[aa[0], aa[1]] == 0:
                    if tag[aa[0], aa[1]] <= noise_num:
                        a_sum += src[aa[0], aa[1]]
                        a_num += 1
                for bb in b:
                    # if tag[bb[0], bb[1]] == 0:
                    if tag[bb[0], bb[1]] <= noise_num:
                        b_sum += src[bb[0], bb[1]]
                        b_num += 1
                if b_num > 0 and a_num > 0:
                    if abs(src[i, j] - a_sum / a_num) > abs(src[i, j] -
                                                            b_sum / b_num):
                        src[i, j] = b_sum / b_num
                    else:
                        src[i, j] = a_sum / a_num
                # 输出测试结果
                # if (i == 7 and j == 72 and b_num != 0):
                #     print(b_sum / b_num)
                # if (i == 7 and j == 72 and a_num != 0):
                #     print(a_sum / a_num)
                # if (i == 7 and j == 72):
                #     print(b_num)
                #     print(a_num)
                #     print(b_sum)
                #     print(a_sum)
    return src
Example #3
0
def cut(gray, th, th2, rgb):
    re = []  # 存储符合条件的八邻域分割点
    re_weak = []
    noise_num = 0
    noise_pos = np.zeros((gray.shape[0], gray.shape[1]))
    for i in range(1, gray.shape[0] - 1):
        for j in range(1, gray.shape[1] - 1):
            mul_list = {}  # 存储每个边的能量值与坐标信息
            poit = {}  # 存储每个点的能量值与坐标信息
            for k in range(len(xx)):
                poit[(i + xx[k], j + yy[k])] = gray[i + xx[k], j + yy[k]]
                # if i == 1 and j == 1:
                #     # print(i + xx[k], j + yy[k])
                #     # print(i + xx[k - 1], j + yy[k - 1])
                # print(type(gray[i + xx[k], j + yy[k]]))
                # print(type(gray[i + xx[k - 1], j + yy[k - 1]]))
                #     # print((gray[i + xx[k], j + yy[k]] - gray[i + xx[k - 1], j + yy[k - 1]]))
                #     print(int(gray[i + xx[k], j + yy[k]]) - int(gray[i + xx[k - 1], j + yy[k - 1]]))
                mul_list[((i + xx[k], j + yy[k]), (i + xx[k - 1], j + yy[k - 1]))] = pow(
                    int(rgb[i + xx[k], j + yy[k], 0]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 0]), 2) + pow(
                    int(rgb[i + xx[k], j + yy[k], 1]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 1]), 2) + pow(
                    int(rgb[i + xx[k], j + yy[k], 2]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 2]), 2)

            noise, a, b = modify.point_classification_new(gray, i, j, 1)  # 找到八邻域中的一个噪声点,后续判断噪声点是否影响分割点
            noise_pos[noise[0][0], noise[0][1]] = 1

            sum_a = 0
            num_a = 0
            sum_b = 0
            num_b = 0
            raws = gray
            point_a = []
            point_b = []
            for k in range(len(a)):
                sum_a += raws[a[k][0], a[k][1]]
                num_a += 1
                point_a.append(raws[a[k][0], a[k][1]])

            for k in range(len(b)):
                sum_b += raws[b[k][0], b[k][1]]
                num_b += 1
                point_b.append(raws[b[k][0], b[k][1]])

            maxa = max(point_a)  # 两个区域的的四个极值
            maxb = max(point_b)
            mina = min(point_a)
            minb = min(point_b)
            # if (maxa >= maxb and mina <= maxb):
            #     re[i, j] = 0
            # elif (maxb >= maxa and minb <= maxa):
            #     re[i, j] = 0

            # print(mul_list)
            # 将每条边的能量进行排序,得到能量最大的两条边为索引1和0,   但是得到的数据类型是列表
            mul_list = sorted(mul_list.items(), key=lambda item: item[1], reverse=True)
            # print(mul_list)

            # print(type(mul_list))

            # mina = min(mul_list[0][0][0][0], mul_list[1][0][0][0])
            # minb = min(mul_list[0][0][0][1], mul_list[1][0][0][1])

            # x1 = (mul_list[0][0][0][0], mul_list[0][0][0][1])
            # x2 = (mul_list[1][0][0][0], mul_list[1][0][0][1])
            n1 = mul_list[0][0]  # 两个含有噪声点的边的坐标信息(不一定含有噪声,只是能量边最大)
            n2 = mul_list[1][0]

            # if i == 1 and j == 1:
            #     print(mul_list)
            #     print(a)
            #     print(b)
            # print(n1)
            # print(n2)

            # print(gray[a, b])
            # del (poit[(a, b)])  # 删除是噪声点那个点
            # print(poit)

            noise_po, po1, po2 = find_(n1, n2)
            # print(noise_po)
            # print(po1)
            # print(po2)

            # if(a1[0][0]==a and a1[0][1]== b):
            # if noise[0] == (mina, minb):  # 判断噪声点影响了八邻域分隔

            if po1 != 0 and noise_po == noise[0]:
                noise_num += 1

                # while po1 != 0 and noise_po == noise[0]:
                #     fix_noise(gray, i, j, noise[0][0], noise[0][1])
                #     noise, a, b = modify.point_classification_new(gray, i, j, 1)  # 找到八邻域中的一个噪声点,后续判断噪声点是否影响分割点
                #     mul_list = {}
                #     for k in range(len(xx)):
                #         mul_list[((i + xx[k], j + yy[k]), (i + xx[k - 1], j + yy[k - 1]))] = (
                #             pow((gray[i + xx[k], j + yy[k]] - gray[i + xx[k - 1], j + yy[k - 1]]), 2))
                #     mul_list = sorted(mul_list.items(), key=lambda item: item[1], reverse=True)
                #     n1 = mul_list[0][0]  # 两个含有噪声点的边的坐标信息(不一定含有噪声,只是能量边最大)
                #     n2 = mul_list[1][0]
                #     noise_po, po1, po2 = find_(n1, n2)
                #     print("while")
                # print("fix")

                if mina > maxb or minb > maxa:
                    if abs((sum_a / num_a) - (sum_b / num_b)) > th:
                        # continue
                        re.append(n1)  # 如果噪声对八邻域分隔没有影响,那么把认为分割正确的两个点加入进去,两个tuple,一共四个坐标
                        re.append(n2)
                    elif th >= abs((sum_a / num_a) - (sum_b / num_b)) >= th2:
                        re_weak.append(n1)  # 如果噪声对八邻域分隔没有影响,那么把认为分割正确的两个点加入进去,两个tuple,一共四个坐标
                        re_weak.append(n2)

                # r1 = mul_list[0][0]
                # del mul_list[0]  # 删除最大能量的两条边
                # r2 = mul_list[0][0]
                # del mul_list[0]
                #
                #
                # m1, m2, m3 = find_(r1, r2)
                #
                # mul_list = listtomap(mul_list)  # 把相应的列表重新转为map类型
                #
                # mul_list[((m2), (m3))] = pow((gray[m2[0]][m2[1]] - gray[m3[0]][m3[1]]), 2)  # 去掉一个噪声点之后的边的能量加入进去

                # re.append(n1)  # 如果噪声对八邻域分隔没有影响,那么把认为分割正确的两个点加入进去,两个tuple,一共四个坐标
                # re.append(n2)


            else:
                if mina > maxb or minb > maxa:
                    if abs((sum_a / num_a) - (sum_b / num_b)) > th:
                        # continue
                        re.append(n1)  # 如果噪声对八邻域分隔没有影响,那么把认为分割正确的两个点加入进去,两个tuple,一共四个坐标
                        re.append(n2)
                    elif th >= abs((sum_a / num_a) - (sum_b / num_b)) >= th2:
                        re_weak.append(n1)  # 如果噪声对八邻域分隔没有影响,那么把认为分割正确的两个点加入进去,两个tuple,一共四个坐标
                        re_weak.append(n2)
    # print(noise_num)
    return re, re_weak, noise_pos
Example #4
0
def show_cut(gray, th, th2, rgb, i, j):
    re = []  # 存储符合条件的八邻域分割点
    re_weak = []
    noise_num = 0
    noise_pos = np.zeros((gray.shape[0], gray.shape[1]))
    # for i in range(1, gray.shape[0] - 1):
    #     for j in range(1, gray.shape[1] - 1):
    mul_list = {}  # 存储每个边的能量值与坐标信息
    poit = {}  # 存储每个点的能量值与坐标信息
    for k in range(len(xx)):
        poit[(i + xx[k], j + yy[k])] = gray[i + xx[k], j + yy[k]]
        # if i == 1 and j == 1:
        #     # print(i + xx[k], j + yy[k])
        #     # print(i + xx[k - 1], j + yy[k - 1])
        # print(type(gray[i + xx[k], j + yy[k]]))
        # print(type(gray[i + xx[k - 1], j + yy[k - 1]]))
        #     # print((gray[i + xx[k], j + yy[k]] - gray[i + xx[k - 1], j + yy[k - 1]]))
        #     print(int(gray[i + xx[k], j + yy[k]]) - int(gray[i + xx[k - 1], j + yy[k - 1]]))
        mul_list[((i + xx[k], j + yy[k]), (i + xx[k - 1], j + yy[k - 1]))] = pow(
            int(rgb[i + xx[k], j + yy[k], 0]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 0]), 2) + pow(
            int(rgb[i + xx[k], j + yy[k], 1]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 1]), 2) + pow(
            int(rgb[i + xx[k], j + yy[k], 2]) - int(rgb[i + xx[k - 1], j + yy[k - 1], 2]), 2)

    noise, a, b = modify.point_classification_new(gray, i, j, 1)  # 找到八邻域中的一个噪声点,后续判断噪声点是否影响分割点
    noise_pos[noise[0][0], noise[0][1]] = 1

    sum_a = 0
    num_a = 0
    sum_b = 0
    num_b = 0
    raws = gray
    point_a = []
    point_b = []
    for k in range(len(a)):
        sum_a += raws[a[k][0], a[k][1]]
        num_a += 1
        point_a.append(raws[a[k][0], a[k][1]])

    for k in range(len(b)):
        sum_b += raws[b[k][0], b[k][1]]
        num_b += 1
        point_b.append(raws[b[k][0], b[k][1]])

    maxa = max(point_a)  # 两个区域的的四个极值
    maxb = max(point_b)
    mina = min(point_a)
    minb = min(point_b)
    # if (maxa >= maxb and mina <= maxb):
    #     re[i, j] = 0
    # elif (maxb >= maxa and minb <= maxa):
    #     re[i, j] = 0

    # print(mul_list)
    # 将每条边的能量进行排序,得到能量最大的两条边为索引1和0,   但是得到的数据类型是列表
    mul_list = sorted(mul_list.items(), key=lambda item: item[1], reverse=True)
    # print(mul_list)

    # print(type(mul_list))

    # mina = min(mul_list[0][0][0][0], mul_list[1][0][0][0])
    # minb = min(mul_list[0][0][0][1], mul_list[1][0][0][1])

    # x1 = (mul_list[0][0][0][0], mul_list[0][0][0][1])
    # x2 = (mul_list[1][0][0][0], mul_list[1][0][0][1])
    n1 = mul_list[0][0]  # 两个含有噪声点的边的坐标信息(不一定含有噪声,只是能量边最大)
    n2 = mul_list[1][0]
    print(n1,end="")
    print(n2)
Example #5
0
def gradient_average_new(raws, x, y, noise_num):
    re = np.zeros((x, y))
    for i in range(1, x - 1):
        for j in range(1, y - 1):
            noise, a, b = modify.point_classification_new(
                raws, i, j, noise_num)  # 在八邻域中找到一个矛盾点剩余部分划分为两个部分
            # print(b)
            point_a = []
            point_b = []

            sum_a = 0
            num_a = 0
            sum_b = 0
            num_b = 0
            min_a = 255  # 获取中心点离两个区间的的最近差值
            min_b = 255
            for k in range(len(a)):
                # point_a.append(raws[i + a[k][0] - 1, j + a[k][1] - 1])  //  这里使用的相对地址,但是前面的函数传入的是绝对地址
                point_a.append(raws[a[k][0], a[k][1]])
                # sum_a += raws[a[k][0] - 1, a[k][1] - 1]
                sum_a += raws[a[k][0], a[k][1]]
                num_a += 1

            for k in range(len(b)):
                # point_b.append(raws[i + b[k][0] - 1, j + b[k][1] - 1])
                point_b.append(raws[b[k][0], b[k][1]])
                # sum_b += raws[b[k][0] - 1, b[k][1] - 1]
                sum_b += raws[b[k][0], b[k][1]]
                num_b += 1
            maxa = max(point_a)  # 两个区域的的四个极值
            maxb = max(point_b)
            mina = min(point_a)
            minb = min(point_b)
            if maxa >= maxb >= mina:
                avg_a = sum_a / num_a
                avg_b = sum_b / num_b
                if (abs(raws[i, j] - avg_a) > abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_b - avg_a
                # else:
                #     re[i,j] = avg_b - avg_a
                if (abs(raws[i, j] - avg_a) < abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_a - avg_b
            elif maxb >= maxa >= minb:
                avg_a = sum_a / num_a
                avg_b = sum_b / num_b
                if (abs(raws[i, j] - avg_a) > abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_b - avg_a
                # else:
                #     re[i,j] = avg_b - avg_a
                if (abs(raws[i, j] - avg_a) < abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_a - avg_b
            else:
                avg_a = sum_a / num_a
                avg_b = sum_b / num_b
                if (abs(raws[i, j] - avg_a) > abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_b - avg_a
                # else:
                #     re[i,j] = avg_b - avg_a
                if (abs(raws[i, j] - avg_a) < abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_a - avg_b
    return re
Example #6
0
def gradient_average(raws, x, y, noise_num):
    re = np.zeros((x, y))
    for i in range(1, x - 1):
        for j in range(1, y - 1):
            noise, a, b = modify.point_classification_new(
                raws, i, j, noise_num)  # 在八邻域中找到一个矛盾点剩余部分划分为两个部分
            # print(b)
            point_a = []
            point_b = []

            sum_a = 0
            num_a = 0
            sum_b = 0
            num_b = 0
            min_a = 255  # 获取中心点离两个区间的的最近差值
            min_b = 255
            for k in range(len(a)):
                # point_a.append(raws[i + a[k][0] - 1, j + a[k][1] - 1])  //  这里使用的相对地址,但是前面的函数传入的是绝对地址
                point_a.append(raws[a[k][0], a[k][1]])
                # sum_a += raws[a[k][0] - 1, a[k][1] - 1]
                sum_a += raws[a[k][0], a[k][1]]
                num_a += 1

            for k in range(len(b)):
                # point_b.append(raws[i + b[k][0] - 1, j + b[k][1] - 1])
                point_b.append(raws[b[k][0], b[k][1]])
                # sum_b += raws[b[k][0] - 1, b[k][1] - 1]
                sum_b += raws[b[k][0], b[k][1]]
                num_b += 1
            maxa = max(point_a)  # 两个区域的的四个极值
            maxb = max(point_b)
            mina = min(point_a)
            minb = min(point_b)
            if (maxa >= maxb and mina <= maxb):
                re[i, j] = 0
            elif (maxb >= maxa and minb <= maxa):
                re[i, j] = 0
            else:
                avg_a = sum_a / num_a
                avg_b = sum_b / num_b
                if (abs(raws[i, j] - avg_a) > abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_b - avg_a
                    if (i == 87 and j == 205):
                        print(a)
                        print(avg_a)
                        print(b)
                        print(avg_b)
                # else:
                #     re[i,j] = avg_b - avg_a
                if (abs(raws[i, j] - avg_a) < abs(raws[i, j] - avg_b)):
                    # if (avg_a > avg_b):
                    re[i, j] = avg_a - avg_b
                    if (i == 87 and j == 205):
                        print(a)
                        print(avg_a)
                        print(b)
                        print(avg_b)
                # else:
                #     re[i,j] = avg_a - avg_b

            # for k in range(len(a)):
            #     temp = abs(raws[i, j] - raws[a[k][0] - 1, a[k][1] - 1])
            #     if (min_a > temp):
            #         min_a = temp
            # for k in range(len(b)):
            #     temp = abs(raws[i, j] - raws[b[k][0] - 1, b[k][1] - 1])
            #     if (min_b > temp):
            #         min_b = temp
            #
            # re[i, j] = abs(sum_a / num_a - sum_b / num_b)
            #
            # if (min_a > min_b):
            #     if (sum_a / num_a > sum_b / num_b):
            #         re[i, j] = -re[i, j]
            #     else:
            #         re[i, j] = re[i, j]
            # if (min_a < min_b):
            #     if (sum_a / num_a > sum_b / num_b):
            #         re[i, j] = re[i, j]
            #     else:
            #         re[i, j] = -re[i, j]
            # if( abs(sum_a / num_a - sum_b / num_b) >5):
            #     re[i, j] = abs(sum_a - sum_b)

            # re[i,j] = abs(avg_a-avg_b)
    return re
Example #7
0
inpath = "D:\\in\\"
outpath = "D:\\out\\"
src = "a"

# raw = cv2.imread(inpath + src + ".jpg")
# raw_Filter = cv2.bilateralFilter(raw, 7, 50, 50)
# cv2.imwrite(outpath + src + "__srcBil" + ".jpg", raw_Filter)
# raw = raw_Filter
# raw2 = cv2.cvtColor(raw_Filter, cv2.COLOR_BGR2GRAY)
# re = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)

# re = np.loadtxt(path1, dtype=np.int, delimiter=",")
# re = np.array([[120, 120, 120], [120, 100, 170], [140, 130, 160]])
re = np.array([[150, 150, 150], [120, 120, 120], [120, 140, 130]])

# no, a, b = modify.point_classification_new(re, 7, 72, 1)
# no, a, b = modify.point_classification_new(re, 1, 1, 2)
no, a, b = modify.point_classification_new(re, 1, 1, 0)
for x in no:
    print(re[x[0], x[1]], end=" ")
print()
# print(a)
for x in a:
    print(re[x[0], x[1]], end=" ")
print()
for x in b:
    print(re[x[0], x[1]], end=" ")
# print(b)
print()
# changeTest.gradient_average(re, re.shape[0], re.shape[1])