def test_read_csv_glob_4373(self): columns, filename = ["col0"], "1x1.csv" pd.DataFrame([[1]], columns=columns).to_csv(filename) kwargs = {"filepath_or_buffer": filename, "usecols": columns} modin_df = pd.read_csv_glob(**kwargs) pandas_df = pandas.read_csv(**kwargs) df_equals(modin_df, pandas_df)
def test_distributed_pickling(filename, compression): data = test_data["int_data"] df = pd.DataFrame(data) if compression: filename = f"{filename}.gz" df.to_pickle_distributed(filename, compression=compression) pickled_df = pd.read_pickle_distributed(filename, compression=compression) df_equals(pickled_df, df) pickle_files = glob.glob(filename) teardown_test_files(pickle_files)
def test_distributed_pickling(filename, compression): data = test_data["int_data"] df = pd.DataFrame(data) filename_param = filename if compression: filename = f"{filename}.gz" with (warns_that_defaulting_to_pandas() if filename_param == test_default_to_pickle_filename else nullcontext()): df.to_pickle_distributed(filename, compression=compression) pickled_df = pd.read_pickle_distributed(filename, compression=compression) df_equals(pickled_df, df) pickle_files = glob.glob(filename) teardown_test_files(pickle_files)