def structure_multiclass_bmrm(fm_train_real=traindat, label_train_multiclass=label_traindat): from modshogun import RealFeatures from modshogun import SOSVMHelper from modshogun import BMRM, PPBMRM, P3BMRM from modshogun import MulticlassModel, MulticlassSOLabels, DualLibQPBMSOSVM, RealNumber labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = DualLibQPBMSOSVM(model, labels, 1.0) # BMRM sosvm.set_solver(BMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("BMRM: Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )) #hp = sosvm.get_helper() #print hp.get_primal_values() #print hp.get_train_errors() # PPBMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(PPBMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("PPBMRM: Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )) # P3BMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(P3BMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1
def structure_multiclass_bmrm(fm_train_real=traindat,label_train_multiclass=label_traindat): from modshogun import RealFeatures from modshogun import SOSVMHelper from modshogun import BMRM, PPBMRM, P3BMRM from modshogun import MulticlassModel, MulticlassSOLabels, DualLibQPBMSOSVM, RealNumber labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = DualLibQPBMSOSVM(model, labels, 1.0) # BMRM sosvm.set_solver(BMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("BMRM: Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )) #hp = sosvm.get_helper() #print hp.get_primal_values() #print hp.get_train_errors() # PPBMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(PPBMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("PPBMRM: Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )) # P3BMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(P3BMRM) sosvm.set_verbose(True) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1
def so_multiclass(fm_train_real=traindat, label_train_multiclass=label_traindat): try: from modshogun import RealFeatures from modshogun import MulticlassModel, MulticlassSOLabels, PrimalMosekSOSVM, RealNumber except ImportError: print("Mosek not available") return labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = PrimalMosekSOSVM(model, labels) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 print("Correct classification rate: %0.2f" % (100.0 * count / out.get_num_labels()))
M = 3 # Number of samples of each class N = 1000 # Dimension of the data dim = 2 X, y = gen_data() cnt = 250 X2, y2 = fill_data(cnt, np.min(X), np.max(X)) labels = MulticlassSOLabels(y) features = RealFeatures(X.T) model = MulticlassModel(features, labels) lambda_ = 1e1 sosvm = DualLibQPBMSOSVM(model, labels, lambda_) sosvm.set_cleanAfter( 10 ) # number of iterations that cutting plane has to be inactive for to be removed sosvm.set_cleanICP(True) # enables inactive cutting plane removal feature sosvm.set_TolRel(0.001) # set relative tolerance sosvm.set_verbose(True) # enables verbosity of the solver sosvm.set_cp_models(16) # set number of cutting plane models sosvm.set_solver(BMRM) # select training algorithm #sosvm.set_solver(PPBMRM) #sosvm.set_solver(P3BMRM)
def structure_multiclass_bmrm(fm_train_real=traindat, label_train_multiclass=label_traindat): from modshogun import MulticlassSOLabels, LabelsFactory from modshogun import RealFeatures from modshogun import SOSVMHelper try: from modshogun import BMRM, PPBMRM, P3BMRM, DualLibQPBMSOSVM except ImportError: print( "At least one of BMRM, PPBMRM, P3BMRM, DualLibQPBMSOSVM not available" ) exit(0) from modshogun import MulticlassModel, RealNumber labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = DualLibQPBMSOSVM(model, labels, 1.0) # BMRM sosvm.set_solver(BMRM) sosvm.set_verbose(True) sosvm.train() bmrm_out = LabelsFactory.to_multiclass_structured(sosvm.apply()) count = 0 for i in range(bmrm_out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(bmrm_out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("BMRM: Correct classification rate: %0.2f" % ( 100.0*count/bmrm_out.get_num_labels() )) #hp = sosvm.get_helper() #print hp.get_primal_values() #print hp.get_train_errors() # PPBMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(PPBMRM) sosvm.set_verbose(True) sosvm.train() ppbmrm_out = LabelsFactory.to_multiclass_structured(sosvm.apply()) count = 0 for i in range(ppbmrm_out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(ppbmrm_out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("PPBMRM: Correct classification rate: %0.2f" % ( 100.0*count/ppbmrm_out.get_num_labels() )) # P3BMRM w = np.zeros(model.get_dim()) sosvm.set_w(w) sosvm.set_solver(P3BMRM) sosvm.set_verbose(True) sosvm.train() p3bmrm_out = LabelsFactory.to_multiclass_structured(sosvm.apply()) count = 0 for i in range(p3bmrm_out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(p3bmrm_out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 #print("P3BMRM: Correct classification rate: %0.2f" % ( 100.0*count/p3bmrm_out.get_num_labels() )) return bmrm_out, ppbmrm_out, p3bmrm_out