def parse_img_with_aug(img): img = tf.io.decode_image(img, channels=all_var_dict['target_shape'][-1], dtype=tf.dtypes.float32, expand_animations=False) img = augment_img(img, 16, 200, all_var_dict['target_shape']) # img = tf.image.resize_with_pad(img, all_var_dict['target_shape'][1], # all_var_dict['target_shape'][0]) return img
def parse_model1(path, label): img = tf.io.read_file(path) img = parse_img(img) if AUGMENT: img = metadata.augment_img(img, 6, target_shape) label = all_var_dict['ok_lookup'].lookup(label) onehot_label = tf.one_hot(label, all_var_dict['LABEL_NUM'], dtype='int64') onehot_label = tf.cast(onehot_label, dtype=tf.float32) return img, onehot_label
def parse_other_com_to_morecomp(path): img = tf.io.read_file(path) img = parse_img(img) if AUGMENT: img = metadata.augment_img(img, 6, target_shape) label = all_var_dict['ok_lookup'].lookup( tf.constant('NG-MoreComp', dtype=tf.string)) onehot_label = tf.one_hot(label, all_var_dict['LABEL_NUM'], dtype='int64') onehot_label = tf.cast(onehot_label, dtype=tf.float32) return img, onehot_label
def process_ng(path, degree): byte_string_img = tf.io.read_file(path) img = tf.io.decode_image(byte_string_img, channels=target_shape[-1], dtype=tf.dtypes.float32) # img = tf.image.convert_image_dtype(img, tf.float32) img = tf.image.resize_with_crop_or_pad(img, target_shape[1], target_shape[0]) if AUGMENT: img = metadata.augment_img(img, 6, target_shape) deg = ng_lookup.lookup(degree) onehot_degree = tf.one_hot(deg, DEGREE_NUM, dtype='int64') return img, onehot_degree