Example #1
0
class MTDNNModel(object):
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict[
            'updates'] if state_dict and 'updates' in state_dict else 0
        self.local_updates = 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        if state_dict:
            self.network.load_state_dict(state_dict['state'], strict=False)
        self.mnetwork = nn.DataParallel(
            self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([
            p.nelement() for p in self.network.parameters() if p.requires_grad
        ])
        if opt['cuda']:
            self.network.cuda()

        no_decay = [
            'bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight'
        ]

        optimizer_parameters = [{
            'params': [
                p for n, p in self.network.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params': [
                p for n, p in self.network.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0
        }]

        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(optimizer_parameters,
                                       opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                    opt['learning_rate'],
                                    warmup=opt['warmup'],
                                    t_total=num_train_step,
                                    max_grad_norm=opt['grad_clipping'],
                                    schedule=opt['warmup_schedule'],
                                    weight_decay=opt['weight_decay'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'radam':
            self.optimizer = RAdam(optimizer_parameters,
                                   opt['learning_rate'],
                                   warmup=opt['warmup'],
                                   t_total=num_train_step,
                                   max_grad_norm=opt['grad_clipping'],
                                   schedule=opt['warmup_schedule'],
                                   eps=opt['adam_eps'],
                                   weight_decay=opt['weight_decay'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
            # The current radam does not support FP16.
            opt['fp16'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                  lr=opt['learning_rate'],
                                  warmup=opt['warmup'],
                                  t_total=num_train_step,
                                  max_grad_norm=opt['grad_clipping'],
                                  schedule=opt['warmup_schedule'],
                                  weight_decay=opt['weight_decay'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt['fp16']:
            try:
                from apex import amp
                global amp
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
                )
            model, optimizer = amp.initialize(self.network,
                                              self.optimizer,
                                              opt_level=opt['fp16_opt_level'])
            self.network = model
            self.optimizer = optimizer

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer,
                                                   mode='max',
                                                   factor=opt['lr_gamma'],
                                                   patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer,
                                               gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [
                    int(step)
                    for step in opt.get('multi_step_lr', '10,20,30').split(',')
                ]
                self.scheduler = MultiStepLR(self.optimizer,
                                             milestones=milestones,
                                             gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None

        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
            if opt['cuda']:
                self.ema.cuda()

        self.para_swapped = False
        # zero optimizer grad
        self.optimizer.zero_grad()

    def setup_ema(self):
        if self.config['ema_opt']:
            self.ema.setup()

    def update_ema(self):
        if self.config['ema_opt']:
            self.ema.update()

    def eval(self):
        if self.config['ema_opt']:
            self.ema.swap_parameters()
            self.para_swapped = True

    def train(self):
        if self.para_swapped:
            self.ema.swap_parameters()
            self.para_swapped = False

    def update(self, batch_meta, batch_data):
        self.network.train()
        labels = batch_data[batch_meta['label']]
        soft_labels = None
        if self.config.get('mkd_opt', 0) > 0 and ('soft_label' in batch_meta):
            soft_labels = batch_meta['soft_label']

        task_type = batch_meta['task_type']
        if task_type == TaskType.Span:
            start = batch_data[batch_meta['start']]
            end = batch_data[batch_meta['end']]
            if self.config["cuda"]:
                start = start.cuda(non_blocking=True)
                end = end.cuda(non_blocking=True)
            start.requires_grad = False
            end.requires_grad = False
        else:
            y = labels
            if task_type == TaskType.Ranking:
                y = y.contiguous().view(-1, batch_meta['pairwise_size'])[:, 0]
            if self.config['cuda']:
                y = y.cuda(non_blocking=True)
            y.requires_grad = False

        task_id = batch_meta['task_id']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)

        if self.config.get('weighted_on', False):
            if self.config['cuda']:
                weight = batch_data[batch_meta['factor']].cuda(
                    non_blocking=True)
            else:
                weight = batch_data[batch_meta['factor']]

        if task_type == TaskType.Span:
            start_logits, end_logits = self.mnetwork(*inputs)
            ignored_index = start_logits.size(1)
            start.clamp_(0, ignored_index)
            end.clamp_(0, ignored_index)
            if self.config.get('weighted_on', False):
                loss = torch.mean(F.cross_entropy(start_logits, start, reduce=False) * weight) + \
                    torch.mean(F.cross_entropy(end_logits, end, reduce=False) * weight)
            else:
                loss = F.cross_entropy(start_logits, start, ignore_index=ignored_index) + \
                    F.cross_entropy(end_logits, end, ignore_index=ignored_index)
            loss = loss / 2
        else:
            logits = self.mnetwork(*inputs)
            if task_type == TaskType.Ranking:
                logits = logits.view(-1, batch_meta['pairwise_size'])
            if self.config.get('weighted_on', False):
                if task_type == TaskType.Regression:
                    loss = torch.mean(
                        F.mse_loss(logits.squeeze(), y, reduce=False) * weight)
                else:
                    loss = torch.mean(
                        F.cross_entropy(logits, y, reduce=False) * weight)
                    if soft_labels is not None:
                        # compute KL
                        label_size = soft_labels.size(1)
                        kd_loss = F.kl_div(F.log_softmax(
                            logits.view(-1, label_size).float(), 1),
                                           soft_labels,
                                           reduction='batchmean')
                        loss = loss + kd_loss
            else:
                if task_type == TaskType.Regression:
                    loss = F.mse_loss(logits.squeeze(), y)
                else:
                    loss = F.cross_entropy(logits, y)
                    if soft_labels is not None:
                        # compute KL
                        label_size = soft_labels.size(1)
                        kd_loss = F.kl_div(F.log_softmax(
                            logits.view(-1, label_size).float(), 1),
                                           soft_labels,
                                           reduction='batchmean')
                        loss = loss + kd_loss

        self.train_loss.update(loss.item(), logits.size(0))
        # scale loss
        loss = loss / self.config.get('grad_accumulation_step', 1)
        if self.config['fp16']:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        self.local_updates += 1
        if self.local_updates % self.config.get('grad_accumulation_step',
                                                1) == 0:
            if self.config['global_grad_clipping'] > 0:
                if self.config['fp16']:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(self.optimizer),
                        self.config['global_grad_clipping'])
                else:
                    torch.nn.utils.clip_grad_norm_(
                        self.network.parameters(),
                        self.config['global_grad_clipping'])

            self.updates += 1
            # reset number of the grad accumulation
            self.optimizer.step()
            self.optimizer.zero_grad()
            self.update_ema()

    def predict(self, batch_meta, batch_data):
        self.network.eval()
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        score = self.mnetwork(*inputs)
        if task_type == TaskType.Ranking:
            score = score.contiguous().view(-1, batch_meta['pairwise_size'])
            assert task_type == TaskType.Ranking
            score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.zeros(score.shape, dtype=int)
            positive = np.argmax(score, axis=1)
            for idx, pos in enumerate(positive):
                predict[idx, pos] = 1
            predict = predict.reshape(-1).tolist()
            score = score.reshape(-1).tolist()
            return score, predict, batch_meta['true_label']
        else:
            if task_type == TaskType.Classification:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.argmax(score, axis=1).tolist()
            score = score.reshape(-1).tolist()
        return score, predict, batch_meta['label']

    def extract(self, batch_meta, batch_data):
        self.network.eval()
        # 'token_id': 0; 'segment_id': 1; 'mask': 2
        inputs = batch_data[:3]
        all_encoder_layers, pooled_output = self.mnetwork.bert(*inputs)
        return all_encoder_layers, pooled_output

    def save(self, filename):
        network_state = dict([(k, v.cpu())
                              for k, v in self.network.state_dict().items()])
        ema_state = dict([
            (k, v.cpu()) for k, v in self.ema.model.state_dict().items()
        ]) if self.ema is not None else dict()
        params = {
            'state': network_state,
            'optimizer': self.optimizer.state_dict(),
            'ema': ema_state,
            'config': self.config,
        }
        torch.save(params, filename)
        logger.info('model saved to {}'.format(filename))

    def load(self, checkpoint):

        model_state_dict = torch.load(checkpoint)
        if model_state_dict['config']['init_checkpoint'].rsplit('/', 1)[1] != \
                self.config['init_checkpoint'].rsplit('/', 1)[1]:
            logger.error(
                '*** SANBert network is pretrained on a different Bert Model. Please use that to fine-tune for other tasks. ***'
            )
            sys.exit()

        self.network.load_state_dict(model_state_dict['state'], strict=False)
        self.optimizer.load_state_dict(model_state_dict['optimizer'])
        self.config = model_state_dict['config']
        if self.ema:
            self.ema.model.load_state_dict(model_state_dict['ema'])

    def cuda(self):
        self.network.cuda()
        if self.config['ema_opt']:
            self.ema.cuda()
Example #2
0
class MTDNNModel(object):
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict['updates'] if state_dict and 'updates' in state_dict else 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        if state_dict:
            new_state = set(self.network.state_dict().keys())
            for k in list(state_dict['state'].keys()):
                if k not in new_state:
                    del state_dict['state'][k]
            for k, v in list(self.network.state_dict().items()):
                if k not in state_dict['state']:
                    state_dict['state'][k] = v
            self.network.load_state_dict(state_dict['state'])
        self.mnetwork = nn.DataParallel(self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([p.nelement() for p in self.network.parameters() if p.requires_grad])

        no_decay = ['bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_parameters = [
            {'params': [p for n, p in self.network.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
            {'params': [p for n, p in self.network.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
            ]
        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.sgd(optimizer_parameters, opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                        opt['learning_rate'],
                                        warmup=opt['warmup'],
                                        t_total=num_train_step,
                                        max_grad_norm=opt['grad_clipping'],
                                        schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False): opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                        lr=opt['learning_rate'],
                                        warmup=opt['warmup'],
                                        t_total=num_train_step,
                                        max_grad_norm=opt['grad_clipping'],
                                        schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False): opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer, mode='max', factor=opt['lr_gamma'], patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer, gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [int(step) for step in opt.get('multi_step_lr', '10,20,30').split(',')]
                self.scheduler = MultiStepLR(self.optimizer, milestones=milestones, gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None
        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
        self.para_swapped = False

    def setup_ema(self):
        if self.config['ema_opt']:
            self.ema.setup()

    def update_ema(self):
        if self.config['ema_opt']:
            self.ema.update()

    def eval(self):
        if self.config['ema_opt']:
            self.ema.swap_parameters()
            self.para_swapped = True

    def train(self):
        if self.para_swapped:
            self.ema.swap_parameters()
            self.para_swapped = False

    def update(self, batch_meta, batch_data):
        self.network.train()
        labels = batch_data[batch_meta['label']]
        if batch_meta['pairwise']:
            labels = labels.contiguous().view(-1, batch_meta['pairwise_size'])[:, 0]
        if self.config['cuda']:
            y = Variable(labels.cuda(async=True), requires_grad=False)
        else:
            y = Variable(labels, requires_grad=False)
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        logits = self.mnetwork(*inputs)
        if batch_meta['pairwise']:
            logits = logits.view(-1, batch_meta['pairwise_size'])

        if self.config.get('weighted_on', False):
            if self.config['cuda']:
                weight = Variable(batch_data[batch_meta['factor']].cuda(async=True))
            else:
                weight = Variable(batch_data[batch_meta['factor']])
            if task_type > 0:
                loss = torch.mean(F.mse_loss(logits.squeeze(), y, reduce=False) * weight)
            else:
                loss = torch.mean(F.cross_entropy(logits, y, reduce=False) * weight)
        else:
            if task_type > 0:
                loss = F.mse_loss(logits.squeeze(), y)
            else:
                loss = F.cross_entropy(logits, y)

        self.train_loss.update(loss.item(), logits.size(0))
        self.optimizer.zero_grad()

        loss.backward()
        if self.config['global_grad_clipping'] > 0:
            torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                          self.config['global_grad_clipping'])
        self.optimizer.step()
        self.updates += 1
        self.update_ema()

    def predict(self, batch_meta, batch_data):
        self.network.eval()
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        score = self.mnetwork(*inputs)
        if batch_meta['pairwise']:
            score = score.contiguous().view(-1, batch_meta['pairwise_size'])
            if task_type < 1:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.zeros(score.shape, dtype=int)
            positive = np.argmax(score, axis=1)
            for idx, pos in enumerate(positive):
                predict[idx, pos] = 1
            predict = predict.reshape(-1).tolist()
            score = score.reshape(-1).tolist()
            return score, predict, batch_meta['true_label']
        else:
            if task_type < 1:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.argmax(score, axis=1).tolist()
            score = score.reshape(-1).tolist()
        return score, predict, batch_meta['label']

    def save(self, filename):
        network_state = dict([(k, v.cpu()) for k, v in self.network.state_dict().items()])
        ema_state = dict(
            [(k, v.cpu()) for k, v in self.ema.model.state_dict().items()]) if self.ema is not None else dict()
        params = {
            'state': network_state,
            'optimizer': self.optimizer.state_dict(),
            'ema': ema_state,
            'config': self.config,
        }
        torch.save(params, filename)
        logger.info('model saved to {}'.format(filename))

    def cuda(self):
        self.network.cuda()
        if self.config['ema_opt']:
            self.ema.cuda()