Example #1
0
def load_inference(loglikelihood, working_path, *param_data):
    """
    Load previous simulation results.

    :param loglikelihood: loglikelihood data of inference
    :param working_path: Where to print the results
    :param param_data: List containing: [name, range_min, range_max, resolution, mean, sigma, value]
    :return: inference object ready to evaluate
    """
    p = []
    for item in param_data:
        p.append(
            RandomVariable(name=item[0],
                           range_min=float(item[1]),
                           range_max=float(item[2]),
                           resolution=float(item[3]),
                           mean=float(item[4]),
                           sigma=float(item[5]),
                           value=float(item[6])))

    pset = ParameterSet(*p)
    res = Analyse(loglikelihood, pset, working_path)
    print("Previous inference data result loaded!")

    return res
Example #2
0
def get_default_param(name):
    Ra = RandomVariable(name='Ra',
                        range_min=50.,
                        range_max=150.,
                        resolution=10,
                        mean=100.,
                        sigma=20.)
    gpas = RandomVariable(name='gpas',
                          range_min=0.00005,
                          range_max=0.00015,
                          resolution=10,
                          mean=0.0001,
                          sigma=0.00002)
    cm = RandomVariable(name='cm',
                        range_min=0.5,
                        range_max=1.5,
                        resolution=10,
                        mean=1.,
                        sigma=0.2)
    dict = {'Ra': Ra, 'cm': cm, 'gpas': gpas}

    return dict[name]
Example #3
0
def load_parameter_set(params_data):
    """
    Create ParameterSet object from parameter data
    :param params_data: Data list of parameters (save_params output) [param1, param2, ...] param1=param_init...
    :return: ParameterSet object 
    """
    from module.probability import RandomVariable, ParameterSet

    p = []
    for item in params_data:
        p.append(
            RandomVariable(name=item[0], range_min=float(item[1]), range_max=float(item[2]), resolution=float(item[3]),
                           mean=float(item[4]), sigma=float(item[5]), value=float(item[6])))
    p_set = ParameterSet(*p)

    return p_set
Example #4
0
np.random.seed(42)

print(t_vec.shape)
covmat, invcovmat = inv_cov_mat_sd(aut_corr_func, t_vec)
print("Inverse covariance matrix is loaded to memory!")
print(invcovmat.shape)

# END OF SETTING UP SIMULATION PARAMETERS -----------------------------------------------------------------------------

# Set up parameters using prior information about them (fix the range we are assuming the true parameter)
prior_params = []
for idx, item in enumerate(p_names):
    prior_params.append(
        RandomVariable(name=item,
                       range_min=p_range[idx][0],
                       range_max=p_range[idx][1],
                       resolution=p_res[idx],
                       sigma=p_std[idx],
                       mean=p_mean[idx]))

prior_set = ParameterSet(*prior_params)
prior_set.batch_len = batch_size
if batch_size is not None:
    prior_set.isBatch = True
else:
    prior_set.isBatch = False
prior_set.create_batch()

# Create fixed params sampled from prior
fixed_params = sampling_from_prior(prior_set, fixed_param_num)

# Save parameter informations
Example #5
0
import time

num_of_iter = 50

noise_sigma = 7.
stim = np.loadtxt(
    "/Users/Dani/TDK/parameter_estim/stim_protocol2/ramp/stim.txt")

Ra_stat = np.zeros((num_of_iter, 6), dtype=np.float)
gpas_stat = np.zeros((num_of_iter, 6), dtype=np.float)
cm_stat = np.zeros((num_of_iter, 6), dtype=np.float)

# Only for plotting
pRa = RandomVariable(name='Ra',
                     range_min=50.,
                     range_max=150.,
                     resolution=40,
                     mean=100.,
                     sigma=20)
pgpas = RandomVariable(name='gpas',
                       range_min=0.00005,
                       range_max=0.00015,
                       resolution=40,
                       mean=0.0001,
                       sigma=0.00002)
pcm = RandomVariable(name='cm',
                     range_min=0.5,
                     range_max=1.5,
                     resolution=40,
                     mean=1.,
                     sigma=0.2)
Example #6
0
from module.noise import colored
from module.trace import stat
from module.plot import plot_stat
from functools import partial
from matplotlib import pyplot as plt
import time

num_of_iter = 50

Ra_stat = np.zeros((num_of_iter, 5), dtype=np.float)
gpas_stat = np.zeros((num_of_iter, 5), dtype=np.float)

# Only for plotting
pRa = RandomVariable(name='Ra',
                     range_min=80,
                     range_max=230,
                     resolution=80,
                     mean=155,
                     sigma=20)
pgpas = RandomVariable(name='gpas',
                       range_min=0.00005,
                       range_max=0.00015,
                       resolution=80,
                       mean=0.0001,
                       sigma=0.00002)

# Load inverse covariance matrix for the multivariate normal noise model
print("Loading inverse covariance matrix...")
inv_covmat = np.genfromtxt(
    '/Users/Dani/TDK/parameter_estim/stim_protocol/broad_invcovmat.csv')
print("Done!")
Example #7
0
    :param var: Normal distribution variance
    :return: Lognormal distribution sigma
    """
    return np.sqrt(np.log(1 + var / mean**2))


if __name__ == "__main__":
    from matplotlib import pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm as CM
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    from module.probability import RandomVariable

    cm = RandomVariable("cm",
                        range_min=0.99999,
                        range_max=1.00001,
                        resolution=10,
                        mean=1.,
                        sigma=0.2)
    gpas = RandomVariable("gpas",
                          range_min=0.00005,
                          range_max=0.00015,
                          resolution=1000,
                          mean=0.0001,
                          sigma=0.00002)

    d_step = cm.sigma * 1e-6
    d_range = [
        cm.mean,
    ]
    n = 2
Example #8
0
for i in range(10):
    print("\n\n--- SIMULATION FOR %ith FIXED PARAMETER ---" % (i+1))
    # Set up "true" value for this cycle
    current_value = {}                                          

    for j in range(len(p_names)):
        val = np.random.normal(p_mean[j], p_std[j])
        current_value[p_names[j]] = val


    # Set up parameters for one cycle
    current_params = []
    for idx, item in enumerate(p_names):
        current_params.append(RandomVariable(name=item, range_min=p_range[idx][0], range_max=p_range[idx][1],
                                            resolution=p_res[idx], value=current_value[item],
                                            sigma=p_std[idx], mean=p_mean[idx]))

    for item in hz:
        print("\n\n---------------------------------------- Running %i Hz zap protocol" % item)

        # Stimulus path
        stim = np.loadtxt("/Users/Dani/TDK/parameter_estim/stim_protocol2/zap/%i/stim.txt" % item)
        working_path = "/Users/Dani/TDK/parameter_estim/stim_protocol2/zaps/%i(%i)" % (item,i)

        # Generate deterministic trace and create synthetic data with noise model
        _, v = model(stype='custom', custom_stim=stim,
                     Ra=current_value['Ra'], gpas=current_value['gpas'], cm=current_value['cm'])

        # Generate noise_rep synthetic data (noise_rep portion noise realisation)
        data = more_w_trace(noise, v, noise_rep)
Example #9
0
import numpy as np
from module.simulation import stick_and_ball
from module.probability import RandomVariable, IndependentInference, ParameterSet
from module.noise import white
from module.plot import fullplot, plot_joint
from functools import partial

noise_sigma = 7.
stim = np.loadtxt("/Users/Dani/TDK/parameter_estim/stim_protocol2/ramp/stim.txt")

Ra = RandomVariable(name='Ra', range_min=40., range_max=150., resolution=160, mean=100., sigma=20)
gpas = RandomVariable(name='gpas', range_min=0.00005, range_max=0.00015, resolution=160, mean=0.0001, sigma=0.00002)
cm = RandomVariable(name='cm', range_min=0.5, range_max=1.7, resolution=160, mean=1., sigma=0.2)

# Generate deterministic trace and create synthetic data with noise model
# t, v = stick_and_ball(stype='custom', custom_stim=stim)
# data = white(noise_sigma, v)
# np.savetxt("/Users/Dani/TDK/parameter_estim/stim_protocol2/ramp/single/data(9).txt", data)

data = np.loadtxt("/Users/Dani/TDK/parameter_estim/stim_protocol2/ramp/single/data(9).txt")

multi_comp = partial(stick_and_ball, stype='custom', custom_stim=stim)  # fix chosen stimulus type for simulations

Ra_cm_gpas = ParameterSet(Ra, cm, gpas)
inference = IndependentInference(model=multi_comp, noise_std=noise_sigma, target_trace=data, parameter_set=Ra_cm_gpas,
                                 working_path="/Users/Dani/TDK/parameter_estim/stim_protocol2/ramp/single", speed="min")

if __name__ == '__main__':
    inference.run_sim()

# inference.save_result()
Example #10
0
from module.noise import white
from module.probability import RandomVariable, ParameterSet, IndependentInference
from module.simulation import stick_and_ball
from module.plot import plot_joint, fullplot

noise = 7.

# 1.) Parameters to infer
cm = RandomVariable(name='cm',
                    range_min=0.5,
                    range_max=1.5,
                    resolution=60,
                    mean=1.2,
                    sigma=0.2,
                    value=1.)
gpas = RandomVariable(name='gpas',
                      range_min=0.00005,
                      range_max=0.00015,
                      resolution=60,
                      mean=0.00008,
                      sigma=0.00002,
                      value=0.0001)
# Ra = RandomVariable(name='Ra', range_min=50., range_max=150., resolution=60, mean=100., sigma=20.)

# 2.) Set up parameter set
cm_gpas = ParameterSet(cm, gpas)

# 3.) Sythetic data
t, v = stick_and_ball()
exp_v = white(noise, v)
Example #11
0
from module.simulation import one_compartment
from module.probability import RandomVariable, DependentInference, ParameterSet
from module.noise import colored
from module.trace import stat
from module.plot import plot_stat
from functools import partial

import time

num_of_iter = 50

cm_stat = np.zeros((num_of_iter, 5), dtype=np.float)
gpas_stat = np.zeros((num_of_iter, 5), dtype=np.float)

# Only for plotting
pcm = RandomVariable(name='cm', range_min=0.5, range_max=1.5, resolution=80, mean=1., sigma=0.2)
pgpas = RandomVariable(name='gpas', range_min=0.00005, range_max=0.00015, resolution=100, mean=0.0001, sigma=0.00002)

# Load inverse covariance matrix for inference
print("Loading inverse covariance matrix...")
inv_covmat = np.genfromtxt('/Users/Dani/TDK/parameter_estim/stim_protocol/broad_invcovmat.csv')
print("Done!")

startTime = time.time()
for i in range(num_of_iter):
    print(str(i) + " is DONE out of " + str(num_of_iter))

    # Sampling current parameter from normal distribution
    current_cm = np.random.normal(pcm.mean, pcm.sigma)
    current_gpas = np.random.normal(pgpas.mean, pgpas.sigma)
Example #12
0
                current_mean[item.name] = mean
                current_minrange.append(mean - item.offset)
                current_maxrange.append(mean + item.offset)

        # Biopysicsal parameters can't be negative
        for idx, item in enumerate(current_minrange):
            if item <= 0.:
                current_minrange[idx] = 0.000001

        # Set up parameters for one cycle
        current_params = []
        for idx, item in enumerate(p_names):
            current_params.append(
                RandomVariable(item,
                               range_min=current_minrange[idx],
                               range_max=current_maxrange[idx],
                               resolution=res[idx],
                               mean=current_mean[item],
                               sigma=fixed_params[idx].sigma))

        # Generate deterministic trace and create synthetic data with noise model
        t, v = model(stype='custom', custom_stim=stim, **current_mean)
        data = white(noise, v)

        pset = ParameterSet(*current_params)
        inf = IndependentInference(data,
                                   pset,
                                   working_path=working_path,
                                   speed=speed)

        modell = partial(model, stype='custom', custom_stim=stim)
        if __name__ == '__main__':
Example #13
0
cm_mean = 1.
cm_sig = 0.2
gpas_mean = 0.0001
gpas_sig = 0.00002
noise_sigma = 7.

cm_start = 0.5
cm_end = 1.5

gpas_start = gpas_mean - 0.00005
gpas_end = gpas_mean + 0.00005

# Only for plotting
pcm = RandomVariable(name='cm',
                     range_min=cm_start,
                     range_max=cm_end,
                     resolution=100,
                     mean=cm_mean,
                     sigma=cm_sig)
pgpas = RandomVariable(name='gpas',
                       range_min=gpas_start,
                       range_max=gpas_end,
                       resolution=100,
                       mean=gpas_mean,
                       sigma=gpas_sig)

startTime = time.time()
for i in range(num_of_iter):
    print(str(i) + " is DONE out of " + str(num_of_iter))

    # Sampling current parameter from normal distribution
    current_cm = np.random.normal(cm_mean, cm_sig)