def __init__(self):
     super().__init__()
     # ----------------------- build the backbone ------------------------ #
     self.resnet50 = ResNet50()
     # ------------ freeze the weights of resnet stage1 and stage 2 ------ #
     if config.backbone_freeze_at >= 1:
         for p in self.resnet50.conv1.parameters():
             p.requires_grad = False
     if config.backbone_freeze_at >= 2:
         for p in self.resnet50.layer1.parameters():
             p.requires_grad = False
     # -------------------------- build the FPN -------------------------- #
     self.backbone = FPN(self.resnet50)
     # -------------------------- build the RPN -------------------------- #
     self.RPN = RPN(config.rpn_channel)
     # ----------------------- build the RCNN head ----------------------- #
     self.Cascade_0 = Cascade('cascade_0')
     #self.Cascade_1 = Cascade('cascade_1')
     self.RCNN = RCNN()
     # -------------------------- input Tensor --------------------------- #
     self.inputs = {
         "image": mge.tensor(
             np.random.random([2, 3, 224, 224]).astype(np.float32), dtype="float32",
         ),
         "im_info": mge.tensor(
             np.random.random([2, 5]).astype(np.float32), dtype="float32",
         ),
         "gt_boxes": mge.tensor(
             np.random.random([2, 100, 5]).astype(np.float32), dtype="float32",
         ),
     }
Example #2
0
 def __init__(self):
     super().__init__()
     self.resnet50 = ResNet50(config.backbone_freeze_at, False)
     self.FPN = FPN(self.resnet50, 2, 6)
     self.RPN = RPN(config.rpn_channel)
     self.RCNN = RCNN()
     self.Cascade_0 = Cascade('cascade_0')
Example #3
0
 def __init__(self):
     super().__init__()
     self.resnet50 = ResNet50(config.backbone_freeze_at, False)
     self.FPN = FPN(self.resnet50, 2, 6)
     self.RPN = RPN(config.rpn_channel)
     self.RCNN = RCNN()
     assert config.num_classes == 2, 'Only support two class(1fg/1bg).'