def match_two_images(self, thresh, score_rec, image_base64_1, image_base64_2):
     """
     Match face in two images.
     Once a face matched, it will return True.
     :param image_base64_1: image encoded in base64
     :param image_base64_2: image encoded in base64
     :param score_rec: float, the score of detected faces should be larger than score_rec
     :param thresh: distance between face and matched face should be smaller than thresh
     :return:bool: True means face matched, False means face not matched.
     """
     image_1 = resize(base64_to_image(image_base64_1))
     image_2 = resize(base64_to_image(image_base64_2))
     faces_1, scores_1, idx_1 = self.detector.run(image_1, 1, score_rec)
     faces_2, scores_2, idx_2 = self.detector.run(image_2, 1, score_rec)
     if len(faces_1) != 1 or len(faces_2) != 1:
         raise FaceNum
     shape_1 = self.sp(image_1, faces_1[0])
     face_chip_1 = dlib.get_face_chip(image_1, shape_1)
     face_descriptor_1 = np.array(self.facerec.compute_face_descriptor(face_chip_1))
     shape_2 = self.sp(image_2, faces_2[0])
     face_chip_2 = dlib.get_face_chip(image_2, shape_2)
     face_descriptor_2 = np.array(self.facerec.compute_face_descriptor(face_chip_2))
     distance = calculate_distance(face_descriptor_1, face_descriptor_2)
     if distance < thresh:
         return True  # True means face matched
     return False  # False means face not matched
Example #2
0
 def car_plate_match(self, image_base64):
     """
     现场监控图像提取车牌信息,在证件信息提取的结果中进行比对。
     :param image_base64: image encoded in base64
     :return: bool, True表示匹配,False表示不匹配
     """
     image = base64_to_image(image_base64)
     ocr_result = self.get_all(image)
     plate = []
     for line in ocr_result:
         info = re.search('[\u4E00-\u9FA5][A-Z][A-Z0-9]{4}[A-Z0-9挂学警港澳]',
                          line[-1][0])
         if info:
             plate.append(info.group(0))
     for key, value in self.tmp_result.items():
         if value:
             if "车牌" in value.keys():
                 if value["车牌"] in plate:
                     return True
     return False
 def match_identity(self, feature_vector, thresh, score_rec, image_base64):
     """
     Match the input feature vector and vector for each face in one image.
     Once a face matched, it will return True.
     :param score_rec: float, the score of detected faces should be larger than score_rec
     :param feature_vector: list, the feature vector to be matched
     :param thresh: distance between face and matched face should be smaller than thresh
     :param image_base64: image encoded in base64
     :return: bool, True means face matched, False means face not matched.
     """
     image = resize(base64_to_image(image_base64))
     faces, scores, idx = self.detector.run(image, 1, score_rec)
     for face in faces:
         shape = self.sp(image, face)
         face_chip = dlib.get_face_chip(image, shape)
         face_descriptor = np.array(self.facerec.compute_face_descriptor(face_chip))
         distance = calculate_distance(face_descriptor, np.array(feature_vector))
         # print(distance)
         if distance < thresh:
             return True  # True means face matched
     return False  # False means face not matched
 def face_register(self, image_base64, score_reg):
     """
     Registers only one face in one picture.
     :param score_reg: float, the score of the face to be registered should be larger than score_reg
     :param image_base64: image encoded in base64
     :return: list: the feature vector of the face in input image
     """
     image = base64_to_image(image_base64)
     # print(image.shape[0], image.shape[1])
     if image.shape[0] > 1000 or image.shape[1] > 1000:
         if image.shape[0] > image.shape[1]:
             proportion = 1000 / image.shape[0]
         else:
             proportion = 1000 / image.shape[1]
         image = cv2.resize(image, None, fx=proportion, fy=proportion, interpolation=cv2.INTER_AREA)
     faces, scores, idx = self.detector.run(image, 1, score_reg)
     if len(faces) != 1:
         raise FaceNum
     shape = self.sp(image, faces[0])
     face_chip = dlib.get_face_chip(image, shape)
     feature_vector = list(self.facerec.compute_face_descriptor(face_chip))
     return feature_vector
Example #5
0
 def recog_one(self, image_base64):
     """
     Recognize one image, and to update tmp_result dict
     :param image_base64: image encoded in base64
     :return: tmp_result: e.x. {"特种设备使用登记证": {"发证日期": "2018年8月1日"},
                             "中华人民共和国道路运输证": {"有效期": None, "经营范围": "危险化学品", "车牌": "鲁FBR932"},
                             "危险货物运输押运人员证": None, "中华人民共和国机动车驾驶证": None,
                             "中华人民共和国机动车行驶证": None, "道路危险货物运输驾驶员证": None}
     :return: pos: int, to tell client witch certificate the image is.
     """
     image = base64_to_image(image_base64)
     ocr_result = self.get_all(image)
     name = self.name_recog(ocr_result)
     if not name:
         raise NameRecFail
     pos = self.pos_dict[name]
     result = {}
     if name in self.config["人脸"]:
         feature = face.face_register(image_base64, 0.5)
         result["人脸"] = feature
         self.face_feature.append(feature)
     for key in self.config["证件"][name]:
         if key == "证件名":
             continue
         method = self.config["证件"][name][key]
         if isinstance(method, list):
             loc = get_location(method[0], ocr_result)
             result[key] = get_info_by_location(ocr_result, method[2], loc,
                                                method[1], 20)
         elif isinstance(method, str):
             res = []
             for line in ocr_result:
                 info = re.search(method, line[-1][0])
                 if info:
                     res.append(info.group(0))
             result[key] = res
     filter_one(result)
     self.tmp_result[name] = result
     return self.tmp_result, pos