Example #1
0
def making_data(data_path, target):
    data = read_data(data_path)
    X, y = extract_target(data, target)
    cat_feats, num_feats = get_features_labels(X)

    mu, sigma = 0, 0.1
    noise = np.random.normal(mu, sigma, [X[num_feats].shape[0], X[num_feats].shape[1]])
    num_feats_new = X[num_feats] + noise
    data_fake = pd.concat([num_feats_new, X[cat_feats], y], axis=1)
    return data_fake
def test_train_model(dataset_path: str, target_name: str, conf_path: str):
    training_pipeline_params = read_training_pipeline_params(conf_path)

    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    X_transformed = full_transform(X)
    X_train, X_test, y_train, y_test = split_train_val_data(
        X_transformed, y, training_pipeline_params.splitting_params)
    model = train_model(X_train, y_train,
                        training_pipeline_params.train_params)
    assert isinstance(model, LogisticRegression)
def test_split_train_val_data(dataset_path: str, target_name: str,
                              conf_path: str):
    training_pipeline_params = read_training_pipeline_params(conf_path)

    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    X_train, X_test, y_train, y_test = split_train_val_data(
        X, y, training_pipeline_params.splitting_params)
    assert len(X_train) > 0
    assert len(X_test) > 0
    assert len(y_train) > 0
    assert len(y_test) > 0
def test_predict_model(dataset_path: str, target_name: str, conf_path: str):
    training_pipeline_params = read_training_pipeline_params(conf_path)

    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    X_transformed = full_transform(X)
    X_train, X_test, y_train, y_test = split_train_val_data(
        X_transformed, y, training_pipeline_params.splitting_params)

    model = train_model(X_train, y_train,
                        training_pipeline_params.train_params)
    pred_labels, pred_proba = predict_model(model, X_test)
    assert len(set(pred_labels)) == 2
    assert max(pred_proba) < 1
Example #5
0
def test_train_pipeline(dataset_path: str, target_name: str, conf_path: str):
    training_pipeline_params = read_training_pipeline_params(conf_path)

    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    X_transformed = full_transform(X)
    X_train, X_test, y_train, y_test = split_train_val_data(
        X_transformed, y, training_pipeline_params.splitting_params)
    model = train_model(X_train, y_train,
                        training_pipeline_params.train_params)
    pred_labels, pred_proba = predict_model(model, X_test)

    res = evaluate_model(y_test, pred_labels, pred_proba)
    assert res['accuracy'] > 0
    assert res['roc_auc_score'] > 0.5
Example #6
0
def predict_pipeline_run(predict_pipeline_params):
    logger.info(f"Start predict pipeline")

    data = read_data(predict_pipeline_params.input_data_path)

    # testing predict function on data without target
    data, y = extract_target(data, 'target')

    data_transformed = full_transform(data)
    logger.info(f"Transformed data shape is {data_transformed.shape}")

    model = load_model(predict_pipeline_params.dump_model)
    pred_labels, pred_proba = predict_model(model, data_transformed)

    pd.Series(pred_labels, index=data_transformed.index, name="prediction") \
        .to_csv(predict_pipeline_params.result_path)
    logger.info(f"Results written to directory")
def train_pipeline_run(training_pipeline_params):
    logger.info(f"Start training pipeline")
    data = read_data(training_pipeline_params.input_data_path)
    X, y = extract_target(data, training_pipeline_params.target_name)
    logger.info(f"X and y shape is {X.shape, y.shape}")

    X_transformed = full_transform(X)
    X_train, X_test, y_train, y_test = split_train_val_data(
        X_transformed, y, training_pipeline_params.splitting_params)

    model = train_model(X_train, y_train,
                        training_pipeline_params.train_params)
    dump_model(training_pipeline_params.dump_model, model)
    logger.info(f"model fitted and dumped")

    pred_labels, pred_proba = predict_model(model, X_test)
    res = evaluate_model(y_test, pred_labels, pred_proba)

    logger.info(f"metrics is {res}")
Example #8
0
def test_get_features_labels(dataset_path: str, target_name: str):
    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    cat_cols, num_cols = get_features_labels(X)
    assert len(num_cols) > 0
Example #9
0
def test_full_transform(dataset_path: str, target_name: str):
    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    X_transformed = full_transform(X)
    assert max(X_transformed.describe().T['std']) < 2
    assert max(abs(X_transformed.describe().T['mean'])) < 1
def test_extract_target(dataset_path: str, target_name: str):
    data = read_data(dataset_path)
    X, y = extract_target(data, target_name)
    assert len(X) > 0
    assert len(y) > 0
def test_read_data(dataset_path: str):
    data = read_data(dataset_path)
    assert len(data) > 0