Example #1
0
def get_item(item_id):
    """get a item from the database"""
    data = items.get_item(item_id)
    if data:
        return jsonify(data), 200
    else:
        return jsonify({"error": "Could get item " + item_id}), 409
    pass
Example #2
0
def get_annotations(collection_id, item_id):
    annotations_json = {}
    item = items.get_item(item_id)
    first_image_id = ""
    for image_id in item["images"]:
        if first_image_id == "":
            first_image_id = image_id
            image = images.get_image(image_id)
            annotations_json["http://localhost:4000/data/" + collection_id +
                             "/" + item_id + "/" + image_id +
                             ".json"] = image["annotations"]
    return jsonify(annotations_json), 200
Example #3
0
def get_items_for_user(user_id):
    if user_id == g.user.username:
        all_collections = collections.get_collections()
        item_list = []
        for collection in all_collections:
            for item_id in collection["items"]:
                item = items.get_item(item_id)
                if item["owner"] == user_id or user_id in item["read"]:
                    item_list.append({
                        "item_id": item_id,
                        "collection_id": collection["_id"]
                    })
        return jsonify({"items": item_list, "host": config.host}), 200
    else:
        return 401
Example #4
0
def get_plain_annotations(item_id):
    annotations_json = {}
    item = items.get_item(item_id)
    page_id = 0
    for image_id in item["images"]:
        image = images.get_image(image_id)
        if "annotations" in image:
            annotations_json[page_id] = {}
            annotation_id = 0
            objects = []
            for obj in image["annotations"]:
                objects.append({
                    "value":
                    obj["resource"][0]["chars"],
                    "location":
                    obj["on"][0]["selector"]["default"]["value"]
                })
                annotation_id += 1
            annotations_json[page_id] = objects
        page_id += 1

    return jsonify(annotations_json), 200
Example #5
0
def get_manifest(collection_id, item_id):
    item = items.get_item(item_id)
    # generate json for images
    image_json = []
    first_image_id = ""
    for image_id in item["images"]:
        if first_image_id == "":
            first_image_id = image_id
        image_json.append(
            generate_image_in_manifest(collection_id, item_id,
                                       images.get_image(image_id)))

    manifest = {
        "@context":
        "http://iiif.io/api/presentation/2/context.json",
        "@id":
        config.host + "/" + collection_id + "/" + item_id,
        "@type":
        "sc:Manifest",
        "attribution":
        item["meta"]["attribution"],
        "metadata":
        item["metadata"],
        "label":
        item["meta"]["label"],
        "logo":
        item["meta"]["logo"],
        "service": {
            "@context": "http://iiif.io/api/search/1/context.json",
            "@id": "http://exist.scta.info/exist/apps/scta/iiif/pg-lon/search",
            "profile": "http://iiif.io/api/search/1/search",
            "label": "Search within this manifest"
        },
        "rendering": {
            "@id": config.host + "/",
            "format": "text/html",
            "label": "Full record view"
        },
        "sequences": [{
            "@id":
            config.host + "/" + collection_id + "/" + item_id + "/" +
            first_image_id + ".json",
            "@type":
            "sc:Sequence",
            "label":
            "Default",
            "canvases":
            image_json
        }],
        "thumbnail": {
            "@id":
            config.host + "/data" + collection_id + "/" + item_id + "/" +
            first_image_id + "/full/,200/0/default",
            "service": {
                "@context":
                "http://iiif.io/api/image/2/context.json",
                "@id":
                config.host + "/data/" + collection_id + "/" + item_id + "/" +
                first_image_id,
                "profile":
                "http://iiif.io/api/image/2/level2.json"
            }
        },
        "within":
        config.host + "/"
    }

    return jsonify(manifest), 200
Example #6
0
def apply_object_detection(collection_id, item_id):
    path_to_data = "../app/webapp/data/" + str(collection_id) + "/" + str(
        item_id) + "/"
    path_to_yolo = "../app/webapp/yolo-coco"
    detected_objects = {}

    def detection_algorithm(input_image,
                            input_yolo=path_to_yolo,
                            input_confidence=0.5,
                            input_treshold=0.3):
        tif_file = Path(input_image + ".tif")
        png_file = Path(input_image + ".png")
        jpg_file = Path(input_image + ".jpg")
        if tif_file.exists():
            input_image = input_image + ".tif"
        elif png_file.exists():
            input_image = input_image + ".png"
        elif jpg_file.exists():
            input_image = input_image + ".jpg"
        print("inp img = ", input_image)

        labelsPath = os.path.sep.join([input_yolo, "coco.names"])
        LABELS = open(labelsPath).read().strip().split("\n")

        weightsPath = os.path.sep.join([input_yolo, "yolov3.weights"])
        configPath = os.path.sep.join([input_yolo, "yolov3.cfg"])
        print("[INFO] loading YOLO from disk...")
        net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

        image = cv2.imread(input_image)
        (H, W) = image.shape[:2]
        ln = net.getLayerNames()
        ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
        blob = cv2.dnn.blobFromImage(image,
                                     1 / 255.0, (416, 416),
                                     swapRB=True,
                                     crop=False)
        net.setInput(blob)
        start = time.time()
        layerOutputs = net.forward(ln)
        end = time.time()
        print("[INFO] YOLO took {:.6f} seconds".format(end - start))

        boxes = []
        confidences = []
        classIDs = []

        for output in layerOutputs:
            for detection in output:
                scores = detection[5:]
                classID = np.argmax(scores)
                confidence = scores[classID]
                if confidence > input_confidence:
                    box = detection[0:4] * np.array([W, H, W, H])
                    (centerX, centerY, width, height) = box.astype("int")
                    x = int(centerX - (width / 2))
                    y = int(centerY - (height / 2))
                    boxes.append([x, y, int(width), int(height)])
                    confidences.append(float(confidence))
                    classIDs.append(classID)

        idxs = cv2.dnn.NMSBoxes(boxes, confidences, input_confidence,
                                input_treshold)

        output = {}

        if len(idxs) > 0:
            for i in idxs.flatten():
                x = boxes[i][0]
                y = boxes[i][1]
                w = boxes[i][2]
                h = boxes[i][3]
                label = "xywh=" + str(x) + "," + str(y) + "," + str(
                    w) + "," + str(h)
                output[label] = str(LABELS[classIDs[i]])

        return output

    item = items.get_item(item_id)
    page_id = 0
    for image_id in item["images"]:
        input_path = path_to_data + str(image_id)
        print(input_path)
        detected_in_curr_image = detection_algorithm(input_path)
        detected_objects[page_id] = detected_in_curr_image
        page_id += 1

    return jsonify(detected_objects), 200