def init_screen(self): self.init_properties() """Creating screen and initializing objects""" pygame.init() size = [self.win_w, self.win_h] pygame.display.set_mode(size, pygame.OPENGL | pygame.DOUBLEBUF) pygame.display.set_caption("Skywalker") pygame.mouse.set_visible(False) gl.glEnable(gl.GL_DEPTH_TEST) gl.glEnable(gl.GL_CULL_FACE) self.light.enable() """ Load model """ os.chdir('./materials/spaceship/') self.ship = Model("spaceship.obj", 0.4, [0, 0, 0], -270, 0, -180) os.chdir('../../') # os.chdir('./materials/Starship/') # self.ship = Model("Starship.obj", 0.01, [0, 0, 0], 90, 0, 180) # os.chdir('../../') # os.chdir('./materials/NCC-1701/') # self.ship = Model("NCC-1701_modified.obj", 1.2, [0, 0, 0], 90, 0, 180) # os.chdir('../../') # os.chdir('./materials/millenium-falcon/') # self.ship = Model("millenium-falcon_modified.obj", 1, [0, 0, 0], 90, 0, 0, using_left=True) # os.chdir('../../') for i in range(MAX_DISPLAY_AST): self.add_ast(isInit=True) self.ship_collider = Sphere(self.ship.radius, [0.0, 0.0, 0.0], [1, 1, 1], False) self.skybox.init_sky()
def test_Moore(self): """Moore neighbourhood test.""" lmZero, lmOne, lmTwo = LifeMap((8, 8)), LifeMap((8, 8)), LifeMap( (8, 8)) lmZero.setCell(2, 3, 1) lmZero.setCell(2, 4, 1) lmZero.setCell(2, 5, 1) lmOne.setCell(1, 4, 1) lmOne.setCell(2, 4, 1) lmOne.setCell(3, 4, 1) lmTwo.setCell(2, 3, 1) lmTwo.setCell(2, 4, 1) lmTwo.setCell(2, 5, 1) model = Model( lmZero, RulesNearCells(2, 0, True, { (0, (5, 3)): 1, (1, (5, 3)): 1, (1, (6, 2)): 1, })) model.makeStep() self.assertEqual(model.getLifeMap().getCellMatrix(), lmOne.getCellMatrix()) model.makeStep() self.assertEqual(model.getLifeMap().getCellMatrix(), lmTwo.getCellMatrix())
def test_Margolis(self): """Margolisx neighbourhood test.""" lmZero, lmOne, lmTwo = LifeMap((8, 8)), LifeMap((8, 8)), LifeMap( (8, 8)) lmZero.setCell(0, 0, 1) lmZero.setCell(3, 1, 2) lmOne.setCell(0, 0, 2) lmOne.setCell(3, 1, 1) lmTwo.setCell(0, 0, 1) lmTwo.setCell(3, 1, 1) model = Model( lmZero, RulesSquares( None, { (1, 0, 0, 0): (2, 0, 0, 0), (0, 2, 0, 0): (0, 1, 0, 0), (0, 0, 1, 0): (0, 0, 2, 0), (0, 0, 0, 2): (0, 0, 0, 1), })) model.makeStep() self.assertEqual(model.getLifeMap().getCellMatrix(), lmOne.getCellMatrix()) model.makeStep() self.assertEqual(model.getLifeMap().getCellMatrix(), lmTwo.getCellMatrix())
def train(modelname: str): ds = Dataset() emails = ds.get_data() md = Model() md.train(emails) md.serialize(modelname) return {"Hello": "World"}
def __init__(self, df, column_type, embedding_dim=5, n_layers=5, dim_feedforward=100, n_head=5, dropout=0.15, ns_exponent=0.75, share_category=False, use_pos=False, device='cpu'): self.logger = create_logger(name="BERTable") self.col_type = {'numerical': [], 'categorical': [], 'vector': []} for i, data_type in enumerate(column_type): self.col_type[data_type].append(i) self.embedding_dim = embedding_dim self.use_pos = use_pos self.device = device self.vocab = Vocab(df, self.col_type, share_category, ns_exponent) vocab_size = { 'numerical': len(self.vocab.item2idx['numerical']), 'categorical': len(self.vocab.item2idx['categorical']) } vector_dims = [np.shape(df[col])[1] for col in self.col_type['vector']] tab_len = len(column_type) self.model = Model(vocab_size, self.col_type, use_pos, vector_dims, embedding_dim, dim_feedforward, tab_len, n_layers, n_head, dropout)
def main(): train_loader, val_loader, collate_fn = prepare_dataloaders(hparams) model = nn.DataParallel(Model(hparams)).cuda() optimizer = torch.optim.Adam(model.parameters(), lr=hparams.lr, betas=(0.9, 0.98), eps=1e-09) criterion = TransformerLoss() writer = get_writer(hparams.output_directory, hparams.log_directory) iteration, loss = 0, 0 model.train() print("Training Start!!!") while iteration < (hparams.train_steps*hparams.accumulation): for i, batch in enumerate(train_loader): text_padded, text_lengths, mel_padded, mel_lengths, gate_padded = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] mel_loss, bce_loss, guide_loss = model(text_padded, mel_padded, gate_padded, text_lengths, mel_lengths, criterion) mel_loss, bce_loss, guide_loss=[ torch.mean(x) for x in [mel_loss, bce_loss, guide_loss] ] sub_loss = (mel_loss+bce_loss+guide_loss)/hparams.accumulation sub_loss.backward() loss = loss+sub_loss.item() iteration += 1 if iteration%hparams.accumulation == 0: lr_scheduling(optimizer, iteration//hparams.accumulation) nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clip_thresh) optimizer.step() model.zero_grad() writer.add_losses(mel_loss.item(), bce_loss.item(), guide_loss.item(), iteration//hparams.accumulation, 'Train') loss=0 if iteration%(hparams.iters_per_validation*hparams.accumulation)==0: validate(model, criterion, val_loader, iteration, writer) if iteration%(hparams.iters_per_checkpoint*hparams.accumulation)==0: save_checkpoint(model, optimizer, hparams.lr, iteration//hparams.accumulation, filepath=f'{hparams.output_directory}/{hparams.log_directory}') if iteration==(hparams.train_steps*hparams.accumulation): break
def train(): # 1. Crear modelo print('(TRAINER) Creating model...') model = Model() # 2. Entrenar clasificador print('(TRAINER) Training model...') model.train() # 3. Guardar clasificador print('(TRAINER) Saving model...') model.save() return model
def predict(examples): # 1. Crear modelo print('(CLASSIFIER) Creating model...') model = Model() # 2. Cargar clasificador print('(CLASSIFIER) Loading model...') model.load() # 3. Calcular prediccion prediction = model.predict(examples) print('(CLASSIFIER) Prediction obtained (' + str(prediction) + ')') return prediction
def __init__(self, model_name, corpus_dataset): self._config = TrainConfig() self._model_name = model_name self._data_loader = corpus_dataset.get_data_loader( self._config.batch_size) self._vocabulary = corpus_dataset.vocabulary self._model = Model(vocabulary=corpus_dataset.vocabulary, training=True) # TODO: Support for other optimizers self._optimizer = optim.Adam(self._model.parameters(), lr=self._config.learning_rate) self._global_step = -1 self._train_logger = logging.getLogger('Train') logging.basicConfig(level=logging.INFO)
def add_ast(self, isInit=False): """Adding asteroids to a random pos near the ship""" size = random.randint(AST_MIN_SIZE, AST_MAX_SIZE) pos_x = random.randint(self.ship.pos[0] - AST_RANGE, self.ship.pos[0] + AST_RANGE) pos_y = random.randint(self.ship.pos[1]+AST_Y_MIN_INIT, self.ship.pos[1]+AST_Y_MAX_INIT) if isInit \ else random.randint(self.ship.pos[1]+AST_Y_MIN, self.ship.pos[1]+AST_Y_MAX) pos_z = random.randint(self.ship.pos[2] - AST_RANGE, self.ship.pos[2] + AST_RANGE) self.asteroids.append( Model("materials/ast_lowpoly2/ast_lowpoly2.obj", size, [pos_x, pos_y, pos_z], random.randint(0, 360), random.randint(0, 360), random.randint(0, 360), False, [ random.randint(-AST_MOVE_RANGE, AST_MOVE_RANGE), random.randint(-AST_MOVE_RANGE, AST_MOVE_RANGE), random.randint(-AST_MOVE_RANGE, AST_MOVE_RANGE) ], random.randint(-AST_ROT_RANGE, AST_ROT_RANGE))) if len(self.asteroids) > MAX_DISPLAY_AST: self.asteroids.popleft()
def main(args): train_loader, val_loader, collate_fn = prepare_dataloaders(hp) model = Model(hp).cuda() optimizer = torch.optim.Adamax(model.parameters(), lr=hp.lr) writer = get_writer(hp.output_directory, args.logdir) model, optimizer = amp.initialize(model, optimizer, opt_level="O1") iteration = 0 model.train() print(f"Training Start!!! ({args.logdir})") while iteration < (hp.train_steps): for i, batch in enumerate(train_loader): text_padded, text_lengths, mel_padded, mel_lengths = [ x.cuda() for x in batch ] recon_loss, kl_loss, duration_loss, align_loss = model(text_padded, mel_padded, text_lengths, mel_lengths) alpha=min(1, iteration/hp.kl_warmup_steps) with amp.scale_loss((recon_loss + alpha*kl_loss + duration_loss + align_loss), optimizer) as scaled_loss: scaled_loss.backward() iteration += 1 lr_scheduling(optimizer, iteration) nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh) optimizer.step() model.zero_grad() writer.add_scalar('train_recon_loss', recon_loss, global_step=iteration) writer.add_scalar('train_kl_loss', kl_loss, global_step=iteration) writer.add_scalar('train_duration_loss', duration_loss, global_step=iteration) writer.add_scalar('train_align_loss', align_loss, global_step=iteration) if iteration % (hp.iters_per_validation) == 0: validate(model, val_loader, iteration, writer) if iteration % (hp.iters_per_checkpoint) == 0: save_checkpoint(model, optimizer, hp.lr, iteration, filepath=f'{hp.output_directory}/{args.logdir}') if iteration == (hp.train_steps): break
def main(): data_type = 'phone' checkpoint_path = f"training_log/aligntts/stage0/checkpoint_{hparams.train_steps[0]}" state_dict = {} for k, v in torch.load(checkpoint_path)['state_dict'].items(): state_dict[k[7:]] = v model = Model(hparams).cuda() model.load_state_dict(state_dict) _ = model.cuda().eval() criterion = MDNLoss() #datasets = ['train', 'val', 'test'] datasets = ['train'] batch_size = 64 for dataset in datasets: #with open(f'filelists/ljs_audio_text_{dataset}_filelist.txt', 'r') as f: with open(f'/hd0/speech-aligner/metadata/metadata.csv', 'r') as f: lines_raw = [line.split('|') for line in f.read().splitlines()] lines_list = [ lines_raw[batch_size * i:batch_size * (i + 1)] for i in range(len(lines_raw) // batch_size + 1) ] for batch in tqdm(lines_list): file_list, text_list, mel_list = [], [], [] text_lengths, mel_lengths = [], [] for i in range(len(batch)): file_name, _, text = batch[i] file_name = os.path.splitext(file_name)[0] file_list.append(file_name) seq = os.path.join( '/hd0/speech-aligner/preprocessed/VCTK20_engspks', f'{data_type}_seq') mel = os.path.join( '/hd0/speech-aligner/preprocessed/VCTK20_engspks', 'melspectrogram') seq = torch.from_numpy( np.load(f'{seq}/{file_name}_sequence.npy')) mel = torch.from_numpy( np.load(f'{mel}/{file_name}_melspectrogram.npy')) text_list.append(seq) mel_list.append(mel) text_lengths.append(seq.size(0)) mel_lengths.append(mel.size(1)) text_lengths = torch.LongTensor(text_lengths) mel_lengths = torch.LongTensor(mel_lengths) text_padded = torch.zeros(len(batch), text_lengths.max().item(), dtype=torch.long) mel_padded = torch.zeros(len(batch), hparams.n_mel_channels, mel_lengths.max().item()) for j in range(len(batch)): text_padded[j, :text_list[j].size(0)] = text_list[j] mel_padded[j, :, :mel_list[j].size(1)] = mel_list[j] text_padded = text_padded.cuda() mel_padded = mel_padded.cuda() mel_padded = ( torch.clamp(mel_padded, hparams.min_db, hparams.max_db) - hparams.min_db) / (hparams.max_db - hparams.min_db) text_lengths = text_lengths.cuda() mel_lengths = mel_lengths.cuda() with torch.no_grad(): encoder_input = model.Prenet(text_padded) hidden_states, _ = model.FFT_lower(encoder_input, text_lengths) mu_sigma = model.get_mu_sigma(hidden_states) _, log_prob_matrix = criterion(mu_sigma, mel_padded, text_lengths, mel_lengths) align = model.viterbi(log_prob_matrix, text_lengths, mel_lengths).to(torch.long) alignments = list(torch.split(align, 1)) for j, (l, t) in enumerate(zip(text_lengths, mel_lengths)): alignments[j] = alignments[j][0, :l.item(), :t.item()].sum( dim=-1) os.makedirs( "/hd0/speech-aligner/preprocessed/VCTK20_engspks/alignments/{}" .format(file_list[j].split('/')[0]), exist_ok=True) np.save( f'/hd0/speech-aligner/preprocessed/VCTK20_engspks/alignments/{file_list[j]}_alignment.npy', alignments[j].detach().cpu().numpy()) # plt.imshow(align[j].detach().cpu().numpy()) # plt.gca().invert_yaxis() # plt.savefig(f"/hd0/speech-aligner/preprocessed/VCTK20_engspks/alignments/{file_list[j]}_alignment.png", format='png') print("Alignments Extraction End!!! ({datetime.now()})")
def main(args): train_loader, val_loader, collate_fn = prepare_dataloaders(hparams, stage=args.stage) if args.stage!=0: checkpoint_path = f"training_log/aligntts/stage{args.stage-1}/checkpoint_{hparams.train_steps[args.stage-1]}" state_dict = {} for k, v in torch.load(checkpoint_path)['state_dict'].items(): state_dict[k[7:]]=v model = Model(hparams).cuda() model.load_state_dict(state_dict) model = nn.DataParallel(model).cuda() else: model = nn.DataParallel(Model(hparams)).cuda() criterion = MDNLoss() writer = get_writer(hparams.output_directory, f'{hparams.log_directory}/stage{args.stage}') optimizer = torch.optim.Adam(model.parameters(), lr=hparams.lr, betas=(0.9, 0.98), eps=1e-09) iteration, loss = 0, 0 model.train() print(f'Stage{args.stage} Start!!! ({str(datetime.now())})') while True: for i, batch in enumerate(train_loader): if args.stage==0: text_padded, mel_padded, text_lengths, mel_lengths = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] align_padded=None else: text_padded, mel_padded, align_padded, text_lengths, mel_lengths = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] sub_loss = model(text_padded, mel_padded, align_padded, text_lengths, mel_lengths, criterion, stage=args.stage) sub_loss = sub_loss.mean()/hparams.accumulation sub_loss.backward() loss = loss+sub_loss.item() iteration += 1 if iteration%hparams.accumulation == 0: lr_scheduling(optimizer, iteration//hparams.accumulation) nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clip_thresh) optimizer.step() model.zero_grad() writer.add_scalar('Train loss', loss, iteration//hparams.accumulation) loss=0 if iteration%(hparams.iters_per_validation*hparams.accumulation)==0: validate(model, criterion, val_loader, iteration, writer, args.stage) if iteration%(hparams.iters_per_checkpoint*hparams.accumulation)==0: save_checkpoint(model, optimizer, hparams.lr, iteration//hparams.accumulation, filepath=f'{hparams.output_directory}/{hparams.log_directory}/stage{args.stage}') if iteration==(hparams.train_steps[args.stage]*hparams.accumulation): break if iteration==(hparams.train_steps[args.stage]*hparams.accumulation): break print(f'Stage{args.stage} End!!! ({str(datetime.now())})')
def testing(non_adapted_model_dir, adapted_model_dir, classifier_dir, nb_clss_labels, feat_path, labels_path, device, src_batch_size, trgt_batch_size): """Implements the complete test process of the AUDASC method :param non_adapted_model_dir: directory of non adapted model :param adapted_model_dir: directory of adapted model :param classifier_dir: directory of classifier :param nb_clss_labels: number of acoustic scene classes :param feat_path: directory of test features :param labels_path: directory of test labels :param device: The device that will be used. :param src_batch_size: source batch size :param trgt_batch_size: target batch size """ non_adapted_cnn = Model().to(device) non_adapted_cnn.load_state_dict( torch.load(path.join(non_adapted_model_dir, 'non_adapted_cnn.pytorch'))) adapted_cnn = Model().to(device) adapted_cnn.load_state_dict( torch.load(path.join(adapted_model_dir, 'target_cnn.pytorch'))) label_classifier = LabelClassifier(nb_clss_labels).to(device) label_classifier.load_state_dict( torch.load(path.join(classifier_dir, 'label_classifier.pytorch'))) non_adapted_cnn.train(False) adapted_cnn.train(False) label_classifier.train(False) feat = file_io.load_pickled_features(feat_path) labels = file_io.load_pickled_features(labels_path) non_adapted_acc = {} adapted_acc = {} '********************************************' '** testing for all data, device A, B, & C **' '********************************************' # testing on source data src_batch_feat, src_batch_labels = \ test_step.test_data_mini_batch(feat['A'].to(device), labels['A'].to(device), batch_size=src_batch_size) non_adapted_src_correct, adapted_src_correct, src_temp = \ test_step.test_function(non_adapted_cnn, adapted_cnn, label_classifier, src_batch_feat, src_batch_labels) non_adapted_src_len = src_temp * src_batch_size adapted_src_len = src_temp * src_batch_size # testing on target data target_feat = torch.cat([feat['B'], feat['C']], dim=0).to(device) target_labels = torch.cat([labels['B'], labels['C']], dim=0).to(device) trgt_batch_feat, trgt_batch_labels =\ test_step.test_data_mini_batch(target_feat, target_labels, batch_size=trgt_batch_size) non_adapted_tgt_correct, adapted_tgt_correct, trgt_temp = \ test_step.test_function(non_adapted_cnn, adapted_cnn, label_classifier, trgt_batch_feat, trgt_batch_labels) non_adapted_tgt_len = trgt_temp * trgt_batch_size adapted_tgt_len = trgt_temp * trgt_batch_size # calculating the accuracy of both models on data from device A non_adapted_acc['A'] = math_funcs.to_percentage(non_adapted_src_correct, non_adapted_src_len) adapted_acc['A'] = math_funcs.to_percentage(adapted_src_correct, adapted_src_len) # calculating the accuracy of both models on data from devices B & C non_adapted_acc['BC'] = math_funcs.to_percentage(non_adapted_tgt_correct, non_adapted_tgt_len) adapted_acc['BC'] = math_funcs.to_percentage(adapted_tgt_correct, adapted_tgt_len) # calculating the accuracy of both models on data from all devices non_adapted_beta, non_adapted_alpha = math_funcs.weighting_factors( non_adapted_src_len, non_adapted_tgt_len) adapted_beta, adapted_alpha = math_funcs.weighting_factors( adapted_src_len, adapted_tgt_len) non_adapted_weighted_acc = (non_adapted_beta * non_adapted_acc['A']) + ( non_adapted_alpha * non_adapted_acc['BC']) adapted_weighted_acc = (adapted_beta * adapted_acc['A']) + ( adapted_alpha * adapted_acc['BC']) non_adapted_acc['all'] = non_adapted_weighted_acc adapted_acc['all'] = adapted_weighted_acc printing.testing_result_msg(non_adapted_acc, adapted_acc, ending='\n', flushing=True)
def main(args): train_loader, val_loader, collate_fn = prepare_dataloaders( hparams, stage=args.stage) initial_iteration = None if args.stage != 0: checkpoint_path = f"training_log/aligntts/stage{args.stage-1}/checkpoint_{hparams.train_steps[args.stage-1]}" if not os.path.isfile(checkpoint_path): print(f'{checkpoint_path} does not exist') checkpoint_path = sorted( glob(f"training_log/aligntts/stage{args.stage-1}/checkpoint_*") )[-1] print(f'Loading {checkpoint_path} instead') state_dict = {} for k, v in torch.load(checkpoint_path)['state_dict'].items(): state_dict[k[7:]] = v model = Model(hparams).cuda() model.load_state_dict(state_dict) model = nn.DataParallel(model).cuda() else: if args.pre_trained_model != '': if not os.path.isfile(args.pre_trained_model): print(f'{args.pre_trained_model} does not exist') state_dict = {} for k, v in torch.load( args.pre_trained_model)['state_dict'].items(): state_dict[k[7:]] = v initial_iteration = torch.load(args.pre_trained_model)['iteration'] model = Model(hparams).cuda() model.load_state_dict(state_dict) model = nn.DataParallel(model).cuda() else: model = nn.DataParallel(Model(hparams)).cuda() criterion = MDNLoss() writer = get_writer(hparams.output_directory, f'{hparams.log_directory}/stage{args.stage}') optimizer = torch.optim.Adam(model.parameters(), lr=hparams.lr, betas=(0.9, 0.98), eps=1e-09) iteration, loss = 0, 0 if initial_iteration is not None: iteration = initial_iteration model.train() print(f'Stage{args.stage} Start!!! ({str(datetime.now())})') while True: for i, batch in enumerate(train_loader): if args.stage == 0: text_padded, mel_padded, text_lengths, mel_lengths = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] align_padded = None else: text_padded, mel_padded, align_padded, text_lengths, mel_lengths = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] sub_loss = model(text_padded, mel_padded, align_padded, text_lengths, mel_lengths, criterion, stage=args.stage, log_viterbi=args.log_viterbi, cpu_viterbi=args.cpu_viterbi) sub_loss = sub_loss.mean() / hparams.accumulation sub_loss.backward() loss = loss + sub_loss.item() iteration += 1 if iteration % 100 == 0: print( f'[{str(datetime.now())}] Stage {args.stage} Iter {iteration:<6d} Loss {loss:<8.6f}' ) if iteration % hparams.accumulation == 0: lr_scheduling(optimizer, iteration // hparams.accumulation) nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clip_thresh) optimizer.step() model.zero_grad() writer.add_scalar('Train loss', loss, iteration // hparams.accumulation) writer.add_scalar('Learning rate', get_lr(optimizer), iteration // hparams.accumulation) loss = 0 if iteration % (hparams.iters_per_validation * hparams.accumulation) == 0: validate(model, criterion, val_loader, iteration, writer, args.stage) if iteration % (hparams.iters_per_checkpoint * hparams.accumulation) == 0: save_checkpoint( model, optimizer, hparams.lr, iteration // hparams.accumulation, filepath= f'{hparams.output_directory}/{hparams.log_directory}/stage{args.stage}' ) if iteration == (hparams.train_steps[args.stage] * hparams.accumulation): break if iteration == (hparams.train_steps[args.stage] * hparams.accumulation): break print(f'Stage{args.stage} End!!! ({str(datetime.now())})')
def analyze(company): """ This route responds when the user submits how many models they would like to train. It trains and predicts with a model as many times as the user specified and then redirects to the final results page. Parameters: company(str): stock symbol of the stock that the model will analyze """ # Reads the user's submission of how many models they would like to train and sets # it to 1 if the user entered something besides a positive integer try: count = int(request.form['count']) if (count <= 0 or count > 3): count = 1 except ValueError: count = 1 # Reading the data stored locally and then cleaning out the filesystem X_pred = pd.read_csv('prediction_data.csv') x = pd.read_csv('x.csv') y = pd.read_csv('y.csv') os.remove('prediction_data.csv') os.remove('x.csv') os.remove('y.csv') # Stores the final prediction and error of each model after it has # completed all of the epochs of traing predictions = [] errors = [] # Stores the predictions each model makes after each epoch prediction_json = [] for i in range(0, count): reg = Model(len(x.columns)) prediction_history, rmse = reg.train(x, y, X_pred) prediction_history.insert(0, 'Model ' + str(i + 1)) prediction_json.append(prediction_history) Y_pred = reg.predict(X_pred) predictions.append(Y_pred) errors.append(rmse) # Average the predictions to get the final or "true" prediction/error true_prediction = sum(predictions) / len(predictions) true_error = sum(errors) / len(errors) # Saving result data so that it can be used in the next route session['predictions'] = prediction_json session['true_prediction'] = true_prediction session['true_error'] = true_error print('') print('********************') print('TRUE PREDICTION: ' + str(true_prediction)) print('********************') print('') print('True Error: ' + str(true_error)) print('') return redirect('/' + company + '/' + str(count) + '/' 'results')
def evaluate(grid_search=False): # Lista de 6-uplas (model, params, accuracy, precision, recall, f1_score) results_list = [] # Iterar segun tipos de modelo for model_type in const.MODELS: print() print('(EVALUATOR) Evaluating model ' + model_type) if grid_search: # Lista de 6-uplas (model, params, accuracy, precision, recall, f1_score) grid_search_list = [] param_space = get_parameter_space(model_type) for params in param_space: # 1. Crear modelo model = Model(model=model_type, params={'model': model_type, 'params': params}) # 2. Entrenar clasificador model.train() # 3. Evaluar clasificador accuracy, results, _, _ = model.evaluate() grid_search_list.append((model_type, params, accuracy, results['precision'], results['recall'], results['f1_score'])) # Ordenar resultados segun f1_score grid_search_list = sorted(grid_search_list, key=lambda x: x[5], reverse=True) print() print('(EVALUATOR) Grid search results -> Model - ', model_type) for _, params, accuracy, precision, recall, f1_score in grid_search_list: print() print("Params - ", params) print("-> F1 Score - ", "{0:.2f}".format(f1_score)) print("-> Precision - ", "{0:.2f}".format(precision)) print("-> Recall - ", "{0:.2f}".format(recall)) print("-> Accuracy - ", "{0:.2f}".format(accuracy)) print() best_params = grid_search_list[0][1] best_accuracy = grid_search_list[0][2] best_precision = grid_search_list[0][3] best_recall = grid_search_list[0][4] best_f1_score = grid_search_list[0][5] results_list.append((model_type, best_params, best_accuracy, best_precision, best_recall, best_f1_score)) else: # 1. Crear modelo model = Model(model=model_type) # 2. Entrenar clasificador model.train() # 3. Evaluar clasificador accuracy, results, _, _ = model.evaluate() results_list.append((model_type, None, accuracy, results['precision'], results['recall'], results['f1_score'])) # Ordenar resultados segun f1_score results_list = sorted(results_list, key=lambda x: x[5], reverse=True) # Mostrar resultados print() print('(EVALUATOR) Sorted results: ') for model, params, accuracy, precision, recall, f1_score in results_list: print() print("Model - ", model) if params is not None: print("Params - ", params) print("-> F1 Score - ", "{0:.2f}".format(f1_score)) print("-> Precision - ", "{0:.2f}".format(precision)) print("-> Recall - ", "{0:.2f}".format(recall)) print("-> Accuracy - ", "{0:.2f}".format(accuracy)) print() best_solution = { 'model': results_list[0][0], 'params': results_list[0][1] } # Elegir mejor modelo, entrenarlo por completo y guardarlo model = Model(model=results_list[0][0], params=best_solution) model.train() model.save() print('(EVALUATOR) Trained and saved best model')
from modules.feature_selectors import ExampleFeatureSelector device = "cpu" raw_data_path = None processed_data_path = None n_epochs = 10 feature_selector = ExampleFeatureSelector() train_data = BioactivityData(raw_data_path, processed_data_path, feature_selector) train_loader = DataLoader(train_data, batch_size=16, shuffle=False) valid_data = None valid_loader = None input_size = train_data[0][0].shape[0] model = Model(input_size, dim=200, n_res_blocks=2).to(device) optimizer = torch.optim.Adam(model.parameters()) loss_fn = torch.nn.BCELoss() def training_epoch(loader, model, opt, loss_fn): for iter, (x, y) in loader: x, y = x.to(device), y.to(device) pred = model(x) loss = loss_fn(pred, y) opt.zero_grad() loss.backward() opt.step()
def initModel(): """Init model instance.""" map = LifeMap((50, 50)) manager = RulesNearCells(2, None, True, {}) return Model(map, manager)
def run_model(config): model = Model(config) model.create_model() model.train_model() return model
def collect_model(spider, brand): #print("start collect model") for model_url in brand.model_urls: model = Model(brand.relative_brand_url, model_url) t = Thread(target=collect_generation, args=(spider, brand, model)) t.start()
if debug_encoded: debug.test_encoded_net(0) if debug_encrypted: debug.test_encrypted_net(1) else: ds = Dataset(verbosity = verbosity) (train, train_labels), (test, test_labels) = ds.load(2) exp = Exporter(verbosity = verbosity) # exp.exportBestOf(train, train_labels, test, test_labels, params, model_name="model15", num_test=10) model = exp.load(model_name='model15') test = test[:coeff_mod] test_labels = test_labels[:coeff_mod] cn = Cryptonet(test, test_labels, model, p_moduli, coeff_mod, precision, True) cn.evaluate() m = Model() acc = m.getAccuracy(model, test, test_labels) print("Original Accuracy: " + str(acc) + "%")
def training_process(device, nb_class_labels, model_path, result_dir, patience, epochs, do_pre_train, tr_feat_path, tr_labels_path, val_feat_path, val_labels_path, tr_batch_size, val_batch_size, adapt_patience, adapt_epochs, d_lr, tgt_lr, update_cnt, factor): """Implements the complete training process of the AUDASC method. :param device: The device that we will use. :type device: str :param nb_class_labels: The amount of labels for label classification. :type nb_class_labels: int :param model_path: The path of previously saved model (if any) :type model_path: str :param result_dir: The directory to save newly pre-trained model. :type result_dir: str :param patience: The patience for the pre-training step. :type patience: int :param epochs: The epochs for the pre-training step. :type epochs: int :param do_pre_train: Flag to indicate if we do pre-training. :type do_pre_train: bool :param tr_feat_path: The path for loading the training features. :type tr_feat_path: str :param tr_labels_path: The path for loading the training labels. :type tr_labels_path: str :param val_feat_path: The path for loading the validation features. :type val_feat_path: str :param val_labels_path: The path for loading the validation labels. :type val_labels_path: str :param tr_batch_size: The batch used for pre-training. :type tr_batch_size: int :param val_batch_size: The batch size used for validation. :type val_batch_size: int :param adapt_patience: The patience for the domain adaptation step. :type adapt_patience: int :param adapt_epochs: The epochs for the domain adaptation step. :type adapt_epochs: int :param d_lr: The learning rate for the discriminator. :type d_lr: float :param tgt_lr: The learning rate for the adapted model. :type tgt_lr: float :param update_cnt: An update controller for adversarial loss :type update_cnt: int :param factor: the coefficient used to be multiplied by classification loss. :type factor: int """ tr_feat = device_exchange(file_io.load_pickled_features(tr_feat_path), device=device) tr_labels = device_exchange(file_io.load_pickled_features(tr_labels_path), device=device) val_feat = device_exchange(file_io.load_pickled_features(val_feat_path), device=device) val_labels = device_exchange( file_io.load_pickled_features(val_labels_path), device=device) loss_func = functional.cross_entropy non_adapted_cnn = Model().to(device) label_classifier = LabelClassifier(nb_class_labels).to(device) if not path.exists(result_dir): makedirs(result_dir) if do_pre_train: state_dict_path = result_dir printing.info_msg('Pre-training step') optimizer_source = torch.optim.Adam( list(non_adapted_cnn.parameters()) + list(label_classifier.parameters()), lr=1e-4) pre_training.pre_training(model=non_adapted_cnn, label_classifier=label_classifier, optimizer=optimizer_source, tr_batch_size=tr_batch_size, val_batch_size=val_batch_size, tr_feat=tr_feat['A'], tr_labels=tr_labels['A'], val_feat=val_feat['A'], val_labels=val_labels['A'], epochs=epochs, criterion=loss_func, patience=patience, result_dir=state_dict_path) del optimizer_source else: printing.info_msg('Loading a pre-trained non-adapted model') state_dict_path = model_path if not path.exists(state_dict_path): raise ValueError( 'The path for loading the pre trained model does not exist!') non_adapted_cnn.load_state_dict( torch.load(path.join(state_dict_path, 'non_adapted_cnn.pytorch'))) label_classifier.load_state_dict( torch.load(path.join(state_dict_path, 'label_classifier.pytorch'))) printing.info_msg('Training the Adversarial Adaptation Model') target_cnn = Model().to(device) target_cnn.load_state_dict(non_adapted_cnn.state_dict()) discriminator = Discriminator(2).to(device) target_model_opt = torch.optim.Adam(target_cnn.parameters(), lr=tgt_lr) discriminator_opt = torch.optim.Adam(discriminator.parameters(), lr=d_lr) domain_adaptation.domain_adaptation( non_adapted_cnn, target_cnn, label_classifier, discriminator, target_model_opt, discriminator_opt, loss_func, loss_func, loss_func, tr_feat, tr_labels, val_feat, val_labels, adapt_epochs, update_cnt, result_dir, adapt_patience, device, factor)
from modules.view import View from modules.model import Model view = View(10) # create view - 10 is field size model = Model(view) # add logic view.render()
import argparse from modules.model import Model parser = argparse.ArgumentParser(description='train covid-diagnosis') parser.add_argument('--model_name', required=True, help='choose model name') parser.add_argument('--backbone', required=True, help='choose backbone for network') parser.add_argument('--dataset', required=True, help='choose dataset from x-ray & CT scan data') parser.add_argument('--grad_cam', default=False, help='visualization of heat map') args = parser.parse_args() test_model = Model(args.model_name, args.backbone) test_model.set_dataset(args.dataset) test_model.train()
def main(): train_loader, val_loader, collate_fn = prepare_dataloaders(hparams) model = nn.DataParallel(Model(hparams)).cuda() if hparams.pretrained_embedding == True: state_dict = torch.load( f'{hparams.teacher_dir}/checkpoint_200000')['state_dict'] for k, v in state_dict.items(): if k == 'alpha1': model.alpha1.data = v if k == 'alpha2': model.alpha2.data = v if 'Embedding' in k: setattr(model, k, v) if 'Encoder' in k: setattr(model, k, v) optimizer = torch.optim.Adam(model.parameters(), lr=hparams.lr, betas=(0.9, 0.98), eps=1e-09) criterion = TransformerLoss() writer = get_writer(hparams.output_directory, hparams.log_directory) iteration, loss = 0, 0 model.train() print("Training Start!!!") while iteration < (hparams.train_steps * hparams.accumulation): for i, batch in enumerate(train_loader): text_padded, text_lengths, mel_padded, mel_lengths, align_padded = [ reorder_batch(x, hparams.n_gpus).cuda() for x in batch ] mel_loss, duration_loss = model(text_padded, mel_padded, align_padded, text_lengths, mel_lengths, criterion) mel_loss, duration_loss = [ torch.mean(x) for x in [mel_loss, duration_loss] ] sub_loss = (mel_loss + duration_loss) / hparams.accumulation sub_loss.backward() loss = loss + sub_loss.item() iteration += 1 if iteration % hparams.accumulation == 0: lr_scheduling(optimizer, iteration // hparams.accumulation) torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clip_thresh) optimizer.step() model.zero_grad() writer.add_scalar('mel_loss', mel_loss.item(), global_step=iteration // hparams.accumulation) writer.add_scalar('duration_loss', duration_loss.item(), global_step=iteration // hparams.accumulation) loss = 0 if iteration % (hparams.iters_per_validation * hparams.accumulation) == 0: validate(model, criterion, val_loader, iteration, writer) if iteration % (hparams.iters_per_checkpoint * hparams.accumulation) == 0: save_checkpoint( model, optimizer, hparams.lr, iteration // hparams.accumulation, filepath= f'{hparams.output_directory}/{hparams.log_directory}') if iteration == (hparams.train_steps * hparams.accumulation): break
def train(train_file, validation_file, batch_size, epoch_limit, file_name, gpu_mode): transformations = transforms.Compose([transforms.ToTensor()]) sys.stderr.write(TextColor.PURPLE + 'Loading data\n' + TextColor.END) train_data_set = PileupDataset(train_file, transformations) train_loader = DataLoader(train_data_set, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=gpu_mode) sys.stderr.write(TextColor.PURPLE + 'Data loading finished\n' + TextColor.END) model = Model() if gpu_mode: model = torch.nn.DataParallel(model).cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # Train the Model sys.stderr.write(TextColor.PURPLE + 'Training starting\n' + TextColor.END) seq_len = 3 iteration_jump = 1 for epoch in range(epoch_limit): total_loss = 0 total_images = 0 total_could_be = 0 for i, (images, labels) in enumerate(train_loader): hidden = model.init_hidden(images.size(0)) # if batch size not distributable among all GPUs then skip if gpu_mode is True and images.size(0) % 8 != 0: continue images = Variable(images, requires_grad=False) labels = Variable(labels, requires_grad=False) if gpu_mode: images = images.cuda() labels = labels.cuda() for row in range(0, images.size(2), iteration_jump): # segmentation of image. Currently using seq_len if row + seq_len > images.size(2): continue x = images[:, :, row:row + seq_len, :] y = labels[:, row:row + seq_len] total_variation = torch.sum(y).data[0] total_could_be += batch_size # print(total_variation) if total_variation == 0 and random.uniform(0, 1) * 100 > 5: continue elif random.uniform(0, 1) < total_variation / batch_size < 0.02: continue # print(x) # print(y) # exit() # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(x, hidden) hidden = repackage_hidden(hidden) # print('Label: ', y.data[0]) # print('Values:', outputs.data[0]) # print(y.contiguous().view(-1)) # exit() # outputs = outputs.view(1, outputs.size(0), -1) required for CTCLoss loss = criterion(outputs.contiguous().view(-1, 3), y.contiguous().view(-1)) # print(outputs.contiguous().view(-1, 3).size()) # print(y.contiguous().view(-1).size()) # exit() loss.backward() optimizer.step() # loss count total_images += batch_size total_loss += loss.data[0] sys.stderr.write(TextColor.BLUE + "EPOCH: " + str(epoch) + " Batches done: " + str(i + 1)) sys.stderr.write(" Loss: " + str(total_loss / total_images) + "\n" + TextColor.END) print( str(epoch) + "\t" + str(i + 1) + "\t" + str(total_loss / total_images)) # After each epoch do validation validate(validation_file, batch_size, gpu_mode, model, seq_len) sys.stderr.write(TextColor.YELLOW + 'Could be: ' + str(total_could_be) + ' Chosen: ' + str(total_images) + "\n" + TextColor.END) sys.stderr.write(TextColor.YELLOW + 'EPOCH: ' + str(epoch)) sys.stderr.write(' Loss: ' + str(total_loss / total_images) + "\n" + TextColor.END) torch.save(model, file_name + '_checkpoint_' + str(epoch) + '.pkl') torch.save( model.state_dict(), file_name + '_checkpoint_' + str(epoch) + '-params' + '.pkl') sys.stderr.write(TextColor.PURPLE + 'Finished training\n' + TextColor.END) torch.save(model, file_name + '_final.pkl') sys.stderr.write(TextColor.PURPLE + 'Model saved as:' + file_name + '.pkl\n' + TextColor.END) torch.save(model.state_dict(), file_name + '_final_params' + '.pkl') sys.stderr.write(TextColor.PURPLE + 'Model parameters saved as:' + file_name + '-params.pkl\n' + TextColor.END)
help='path to config') args = parser.parse_args() config_path = args.config logger = get_logger(name=ROOT_LOGGER_NAME, console=True, log_level="INFO", propagate=False) logger.info(f"Reading config from {Path(config_path).absolute()}") with open(config_path) as con_file: config = json.load(con_file) logger.info(f"Using config {config}") logger.info(f"Loading model {config.get('model_name')}...") model = Model(logger, **config) # setting the api app = Flask(__name__) CORS(app) api = Api(app, version=config.get("api_version", "0.0"), title='Int20h Final Submission') ns1 = api.namespace('rating_model', description=config.get('model_name', 'Model')) # response format response = api.model( 'model_response', { 'book_rating': fields.Float(required=True, description='neutral class probability'),
data_type_ = 'char' data_type = 'phone' checkpoint_path = f"training_log/aligntts/stage0/checkpoint_40000" from glob import glob # checkpoint_path = sorted(glob("training_log/aligntts/stage0/checkpoint_*"))[0] checkpoint_path = "training_log/aligntts/stage0/checkpoint_40000" print(checkpoint_path) state_dict = {} for k, v in torch.load(checkpoint_path)['state_dict'].items(): state_dict[k[7:]] = v model = Model(hparams).cuda() model.load_state_dict(state_dict) _ = model.cuda().eval() criterion = MDNLoss() import time datasets = ['train', 'val', 'test'] batch_size = 64 batch_size = 1 start = time.perf_counter() for dataset in datasets: with open(f'filelists/ljs_audio_text_{dataset}_filelist.txt',