def getDataFromFile(self, input_file): # read the eeg file to the list data = read( input_file, delimiter=',', header=1, to_float=True, transpose=True ) # choose the channel (in this example its 1st channel - 0) data = data[0] return data
# seconds analysed sec_beg = 15 sec_end = 20 sec_rng = sec_end-sec_beg # lower and higher range values rng = [sec_beg*int(fs), sec_end*int(fs)] ############################################ # # # GET DATA FROM FILE # # # ############################################ # read the eeg file to the list data = read( eeg_file, delimiter=',', header=1, to_float=True, transpose=True ) # choose the channel (in this example its 1st channel - 0) data = data[0] data_rng = data[rng[0]:rng[1]] # required for futher plotting appropriate x axis (samples) x_time = [i/fs for i in range(len(data))] x_time_rng = x_time[rng[0]:rng[1]] ############################################ # # # FILTERING # # #
highcut = 50.0 # bandstop values lowstop = 49.0 highstop = 51.0 # file with eeg data location eeg_file = args.data_file ############################################ # # # GET DATA FROM FILE # # # ############################################ # read the eeg file to the list data = read(eeg_file, delimiter=',', header=1, to_float=True, transpose=True) # choose the channel (in this example its 1st channel - 0) data = data[0] ############################################ # # # FILTERING # # # ############################################ # filter data using butt bandstop 49-51 Hz filter (50Hz) flted_50_stop = flt.butter_bandstop_filter(data, lowstop, highstop, fs, order=2)
# # # GET DATA FROM FILE # # # ############################################ # read the eeg file to the list # SNIFFER for detecting dialect #with open(eeg_file, newline='') as csvfile: # dialect = csv.Sniffer().sniff(csvfile.read(1024)) # csvfile.seek(0) # reader = csv.reader(csvfile, dialect) data = read(eeg_file, delimiter=',', header=7, to_float=False, transpose=False, comas=False, mode='rt') #data = read( # eeg_file, delimiter=',', header=0, to_float=False, transpose=False, # comas=False, mode='rt' # ) # data extraction/ cleanup data = zip(*data) data = list(data) # choose the channel data = np.asanyarray(data[:12]) data = data.astype(np.float)