def main():
    loss_norm = []
    loss_difference = []
    countries = [
        'Afghanistan', 'Indien', 'Irak', 'Kolumbien', 'Pakistan',
        'Philippinen', 'sandbox_attacks', 'test_exp_chirp'
    ]
    for country in countries:
        test_len = 30
        data_name = country
        data_dir = '../../' + data_name + '.csv'
        train_data, train_date, test_data, test_date, std = prepare_data(
            data_dir, test_len=test_len, normalize=False)

        scale_down_mean = np.mean(train_data[-365 - 365 + test_len:-365])
        scale_down_std = np.std(train_data[-365 - 365 + test_len:-365])
        scale_up_mean = np.mean(train_data[-365 + 30:])
        scale_up_std = np.std(train_data[-365 + 30:])

        prediction = ((train_data[-365:-365 + 30] - scale_down_mean) /
                      scale_down_std) * scale_up_std + scale_up_mean

        loss_norm.append(normed_loss(prediction, test_data))
        loss_difference.append(differential_loss(prediction, test_data))

        plt.figure()
        plt.plot_date(test_date, test_data, xdate=True, label='Labels', ls="-")
        plt.plot_date(test_date,
                      prediction,
                      xdate=True,
                      label='Predictions',
                      ls="-")
        plt.xticks(rotation="vertical")
        plt.title('Prediction')
        plt.legend()
        plt.xlabel('Days')
        plt.ylabel('Attack')
        save_fig(data_name, './Images/')
    loss_dict = {
        'Countries': countries,
        'Normed_loss': loss_norm,
        'Differential_loss': loss_difference
    }
    pd.DataFrame(loss_dict).to_csv('./Last_year_scaling_loss.csv')
def main():
    loss_norm = []
    loss_difference = []
    countries = [
        'Afghanistan', 'Indien', 'Irak', 'Kolumbien', 'Pakistan',
        'Philippinen', 'sandbox_attacks', 'test_exp_chirp'
    ]
    for country in countries:
        data_name = country
        data_dir = '../../' + data_name + '.csv'
        train_data, train_date, test_data, test_date, std = prepare_data(
            data_dir, test_len=30, normalize=False)
        weight_aray = np.linspace(0, 1, 100)
        feed = train_data[-100:].flatten()
        pred = np.divide(np.sum(np.multiply(weight_aray, feed)),
                         np.sum(weight_aray))
        prediction = np.ones((len(test_data))) * pred

        loss_norm.append(normed_loss(prediction, test_data))
        loss_difference.append(differential_loss(prediction, test_data))

        plt.figure()
        plt.plot_date(test_date, test_data, xdate=True, label='Labels', ls="-")
        plt.plot_date(test_date,
                      prediction,
                      xdate=True,
                      label='Predictions',
                      ls="-")
        plt.xticks(rotation="vertical")
        plt.title('Prediction')
        plt.legend()
        plt.xlabel('Days')
        plt.ylabel('Attack')
        save_fig(data_name, './Images/')
    loss_dict = {
        'Countries': countries,
        'Normed_loss': loss_norm,
        'Differential_loss': loss_difference
    }
    pd.DataFrame(loss_dict).to_csv('./Average_loss.csv')
def main():

    loss_norm = []
    loss_difference = []
    countries = [
        'Afghanistan', 'Indien', 'Irak', 'Kolumbien', 'Pakistan',
        'Philippinen', 'sandbox_attacks', 'test_exp_chirp'
    ]

    for country in countries:
        data_name = country
        data_dir = '../../' + data_name + '.csv'
        train_data_scaled, train_date, test_data, test_date, std = prepare_data(
            data_dir, normalize=True, scaling='minmax')
        model_dir = './model/'
        num_epoch = 1000
        n_steps = 100
        n_inputs = 1
        n_neurons = 30
        n_layers = 1
        print(country)
        sess, train_loss, epoch_count = training(train_data_scaled,
                                                 model_dir,
                                                 num_epoch=num_epoch,
                                                 n_steps=n_steps,
                                                 n_inputs=n_inputs,
                                                 n_neurons=n_neurons,
                                                 n_layers=n_layers)
        print()

        prediction, true_labels, label_dates = predict(test_data, test_date,
                                                       sess, std, model_dir,
                                                       n_steps, n_inputs)
        #        rescaled_prediction = std.inverse_transform(prediction.reshape(-1,1))
        #        rescaled_labels = std.inverse_transform(true_labels.reshape(-1,1))

        loss_norm.append(normed_loss(prediction, true_labels))
        loss_difference.append(differential_loss(prediction, true_labels))

        plt.figure()
        plt.subplot(211)
        plt.plot(epoch_count, train_loss)
        plt.title('Training loss')
        plt.xlabel('Epoch')
        plt.ylabel('Training MSE')
        plt.subplot(212)
        plt.plot_date(label_dates,
                      true_labels,
                      xdate=True,
                      label='Labels',
                      ls="-")
        plt.plot_date(label_dates,
                      prediction,
                      xdate=True,
                      label='Predictions',
                      ls="-")
        plt.xticks(rotation="vertical")
        plt.title('Prediction')
        plt.legend()
        plt.xlabel('Days')
        plt.ylabel('Attack')
        save_fig('predicted value feedback' + data_name, './Images/')
    loss_dict = {
        'Countries': countries,
        'Normed_loss': loss_norm,
        'Differential_loss': loss_difference
    }
    pd.DataFrame(loss_dict).to_csv('./RNN_loss.csv')
Example #4
0
data_check = pd.read_csv("../random_new.csv",index_col=0)

data_check_val = data_check.values
print(data_check_val.shape)
random_check_set = data_check_val[:,1:]
random_check_dates = data_check_val[:,0]

print(random_check_set.shape)
print(random_check_dates.shape)
#std = StandardScaler()

random_check_std = std.transform(random_check_set)

#%%
img_dir = "../../../images/random_new/with_features/"
with tf.Session() as sess:
    saver.restore(sess,'../saved_model/1_complex/with_features/')
    
    for i in range(5):
        X_check, y_check, date_check = fetch_batch(random_check_std,random_check_dates, 1, l, w, pred_window)
        #X_check, y_check = fetch_batch(test_set, 1, l, w, pred_window)
        prediction = sess.run(output,feed_dict={X:X_check, y: y_check})
        plt.figure()
        plt.plot_date(date_check.reshape(-1),y_check[0,:],xdate=True,label='actual',ls="-")
        plt.plot_date(date_check.reshape(-1),prediction[0,:],xdate=True,label='predictions',ls="-")
        plt.xticks(rotation="vertical")
        plt.legend()
        plt.xlabel('Days')
        plt.ylabel('Attack')
        save_fig(i,img_dir)
            train_error = sess.run(mse, feed_dict = {X:X_batch[:,:,:,2:], y: y_batch})
            test_x, test_y,_ = fetch_batch(test_std,test_date, 1, l, w, pred_window)
            #test_x, test_y = fetch_batch(test_set, 1, l, w, pred_window)
            test_error = sess.run(mse, feed_dict = {X:test_x[:,:,:,2:], y: test_y})
            print("Epoch: ",epoch, " Training error: ", train_error, " Test error: ", test_error)
    saver.save(sess,directory)
    #plt.figure()
    #plt.plot()
    

#print(mse)

#%%
#X_check, y_check = fetch_batch(test_set, 1, l, w, pred_window)
img_dir = "../../../images/1_complex/only_attack/"
with tf.Session() as sess:
    saver.restore(sess,directory)
    
    for i in range(10):
        X_check, y_check, date_check = fetch_batch(test_std,test_date, 1, l, w, pred_window)
        #X_check, y_check = fetch_batch(test_set, 1, l, w, pred_window)
        prediction = sess.run(output,feed_dict={X:X_check[:,:,:,2:], y: y_check})
        plt.figure()
        plt.plot_date(date_check.reshape(-1),y_check[0,:],xdate=True,label='actual',ls="-")
        plt.plot_date(date_check.reshape(-1),prediction[0,:],xdate=True,label='predictions',ls="-")
        plt.xticks(rotation="vertical")
        plt.legend()
        plt.xlabel('Days')
        plt.ylabel('Attack')
        save_fig(i+10,img_dir)